Showing posts with label Germany. Show all posts
Showing posts with label Germany. Show all posts

March 25, 2016

Bronze Age war in northern Germany

Slaughter at the bridge: Uncovering a colossal Bronze Age battle
About 3200 years ago, two armies clashed at a river crossing near the Baltic Sea. The confrontation can’t be found in any history books—the written word didn’t become common in these parts for another 2000 years—but this was no skirmish between local clans. Thousands of warriors came together in a brutal struggle, perhaps fought on a single day, using weapons crafted from wood, flint, and bronze, a metal that was then the height of military technology.

...

In 1996, an amateur archaeologist found a single upper arm bone sticking out of the steep riverbank—the first clue that the Tollense Valley, about 120 kilometers north of Berlin, concealed a gruesome secret. A flint arrowhead was firmly embedded in one end of the bone, prompting archaeologists to dig a small test excavation that yielded more bones, a bashed-in skull, and a 73-centimeter club resembling a baseball bat. The artifacts all were radiocarbon-dated to about 1250 B.C.E., suggesting they stemmed from a single episode during Europe’s Bronze Age.

...

Northern Europe in the Bronze Age was long dismissed as a backwater, overshadowed by more sophisticated civilizations in the Near East and Greece. Bronze itself, created in the Near East around 3200 B.C.E., took 1000 years to arrive here. But Tollense’s scale suggests more organization—and more violence—than once thought. “We had considered scenarios of raids, with small groups of young men killing and stealing food, but to imagine such a big battle with thousands of people is very surprising,” says Svend Hansen, head of the German Archaeological Institute’s (DAI’s) Eurasia Department in Berlin. The well-preserved bones and artifacts add detail to this picture of Bronze Age sophistication, pointing to the existence of a trained warrior class and suggesting that people from across Europe joined the bloody fray.

...

There was reason for skepticism. Before Tollense, direct evidence of large-scale violence in the Bronze Age was scanty, especially in this region. Historical accounts from the Near East and Greece described epic battles, but few artifacts remained to corroborate these boastful accounts. “Even in Egypt, despite hearing many tales of war, we never find such substantial archaeological evidence of its participants and victims,” UCD’s Molloy says.

...

Ancient DNA could potentially reveal much more: When compared to other Bronze Age samples from around Europe at this time, it could point to the homelands of the warriors as well as such traits as eye and hair color. Genetic analysis is just beginning, but so far it supports the notion of far-flung origins. DNA from teeth suggests some warriors are related to modern southern Europeans and others to people living in modern-day Poland and Scandinavia. “This is not a bunch of local idiots,” says University of Mainz geneticist Joachim Burger. “It’s a highly diverse population.”

May 04, 2015

Facial reconstruction of Lord of Moken

I wonder when we will start seeing facial reconstructions that make use of ancient DNA. Ancient DNA isn't very good for reconstructing facial features, but it should be quite good at reconstructing pigmentation.

Facial reconstruction for 1,400-year-old 'Lord of Morken'
The man's remains were discovered in 1955 in a Franconian burial ground in Morken, near Cologne. He had been interred around the year 600 AD in a royal burial chamber there. The precious goods within the grave, especially the materials used for his weapons, suggest that the man enjoyed a special status in the population, Elke Nieveler a specialist for the early Middle Ages at the Rheinisches Landesmuseum said.

February 12, 2015

A story of 69 ancient Europeans

A new study on the bioRxiv includes data on 69 ancient Europeans (remember when we got excited in anticipation for the single genome of the Iceman? that was only three years ago) and adds plenty of new info to chew on for those of us interested in prehistory. 

Two Near Eastern migrations into Europe

In 2011, I observed that West Eurasian populations were too close (measured by Fst) to allow for long periods of differentiation between them. By implication, there must have been a "common source" of ancestry uniting them, which I placed in a "womb of nations" of the Neolithic Near East. I proposed that migrations out of this core area homogenized West Eurasians, writing:
In Arabia, the migrants would have met aboriginal Arabians, similar to their next door-neighbors in East Africa, undergoing a subtle African shift (Southwest_Asians). In North Africa, they would have encountered denser populations during the favorable conditions of MIS 1, and by absorbing them they would became the Berbers (Northwest_Africans). Their migrations to the southeast brought them into the realm of Indian-leaning people, in the rich agricultural fields of the Mehrgarh and the now deserted oases of Bactria and Margiana. Across the Mediterranean and along the Atlantic facade of Europe, they would have encountered the Mesolithic populations of Europe, and through their blending became the early Neolithic inhabitants of the Mediterranean and Atlantic coasts of Europe (Mediterraneans). And, to the north, from either the Balkans, the Caucasus, or the trans-Caspian region, they would have met the last remaining Proto-Europeoid hunters of the continental zone, becoming the Northern Europeoids who once stretched all the way to the interior of Asia.
The new paper confirms the last two of these migrations. The remainder involve parts of the world from which no ancient DNA has been studied.

The first migration (early Neolithic) is already uncontroversial, but the paper includes data from Spanish early farmers that are also Sardinian- and LBK-like. The "Sardinian" Iceman was no fluke. It is now proven that not only the LBK but also the Spanish Neolithic came from the same expansion of Mediterranean populations which survives in Sardinia. The authors write:
Principal components analysis (PCA) of all ancient individuals along with 777 present-day West Eurasians4 (Fig. 2a, SI5) replicates the positioning of present-day Europeans between the Near East and European hunter-gatherers4,20, and the clustering of early farmers from across Europe with present day Sardinians3,4,27, suggesting that farming expansions across the Mediterranean to Spain and via the Danubian route to Hungary and Germany descended from a common stock.
The second migration went into eastern Europe:
The Yamnaya differ from the EHG by sharing fewer alleles with MA1 (|Z|=6.7) suggesting a dilution of ANE ancestry between 5,000-3,000 BCE on the European steppe. This was likely due to admixture of EHG with a population related to present-day Near Easterners, as the most negative f3-statistic in the Yamnaya (giving unambiguous evidence of admixture) is observed when we model them as a mixture of EHG and present-day Near Eastern populations like Armenians (Z = -6.3; SI7).
The EHG (Eastern European Hunter-Gatherers) are likely Proto-Europeoid foragers and the Yamnaya (a Bronze Age Kurgan culture) were a mixture of the EHG and something akin to Armenians.The "attraction" of later groups to the Near East is clear in the PCA: hunter-gatherers on the left side, the Near East (as grey dots) on the right side, and Neolithic/Bronze Age/modern Europeans in the middle. The second migration may very well be related to the Uruk expansion and the presence of gracile Mediterranoids and robust Proto-Europeoids in the Yamna:
The Yamna population generally belongs to the European race. It was tall (175.5cm), dolichocephalic, with broad faces of medium height. Among them there were, however, more robust elements with high and wide faces of the proto-Europoid type, and also more gracile individuals with narrow and high faces, probably reflecting contacts with the East Mediterranean type (Kurts 1984: 90).
The authors present a table of Fst values which confirms the homogenizing influence of migrations from the Near East. The WHG group has an Fst=0.086 with Armenians, but the LBK farmers have only 0.023. The EHG group has an Fst=0.067 with Armenians, but the Yamnaya steppe people have only 0.030. Someone might argue that it is the Armenians that are receiving genes from Europe, but the same pattern holds even for the Bedouins, for which admixture with Europeans seems far-fetched: 0.106 to 0.043 and 0.093 to 0.060. It is now clear that the "glue" that did not allow West Eurasian populations to drift very far apart were migrations from the Near East.

The (partial) demise of the farmers

It seems that the legacy of the early farmers suffered two hits, which is why only in Sardinia and (to a lesser degree) in southern Europe that they have persisted as the major component of ancestry. The first blow came during the Neolithic:
Middle Neolithic Europeans from Germany, Spain, Hungary, and Sweden from the period ~4,000-3,000 BCE are intermediate between the earlier farmers and the WHG, suggesting an increase of WHG ancestry throughout much of Europe.
And the coup de grâce after the 5kya mark:
We estimate that these two elements each contributed about half the ancestry each of the Yamnaya (SI6, SI9), explaining why the population turnover inferred using Yamnaya as a source is about twice as high compared to the undiluted EHG. The estimate of Yamnaya related ancestry in the Corded Ware is consistent when using either present populations or ancient Europeans as outgroups (SI9, SI10), and is 73.1 ± 2.2% when both sets are combined (SI10). [...] The magnitude of the population turnover that occurred becomes even more evident if one considers the fact that the steppe migrants may well have mixed with eastern European agriculturalists on their way to central Europe. Thus, we cannot exclude a scenario in which the Corded Ware arriving in today’s Germany had no ancestry at all from local populations.
Confirmation of the Bronze Age Indo-European invasion of Europe

In 2012 I had used the paltry data on a handful ancient DNA samples to observe that in ADMIXTURE modern Europeans had a West Asian genetic component (peaking in "Caucasus" and "Gedrosia") that pre-5kya Europeans didn't. I proposed that the Bronze Age migration of the Indo-Europeans spread this component:
But there is another component present in modern Europe, the West_Asian which is conspicuous in its absence in all the ancient samples so far. This component reaches its highest occurrence in the highlands of West Asia, from Anatolia and the Caucasus all the way to the Indian subcontinent. [...] Nonetheless, some of the legacy of the earliest Indo-European speakers does appear to persist down to the present day in the genomes of their linguistic descendants, and I predict that when we sample later (post 5-4kya) individuals we will finally find the West_Asian piece that is missing from the European puzzle.
This prediction is now confirmed:
This pattern is also seen in ADMIXTURE analysis (Fig. 2b, SI6), which implies that the Yamnaya have ancestry from populations related to the Caucasus and South Asia that is largely absent in 38 Early or Middle Neolithic farmers but present in all 25 Late Neolithic or Bronze Age individuals. This ancestry appears in Central Europe for the first time in our series with the Corded Ware around 2,500 BCE (SI6, Fig. 2b, Extended Data Fig. 1).
I was a little puzzled with the "Ancient North Eurasians" recently proposed as a "third ancestral population" for Europeans: it seemed to be a tertium quid that spread after 5kya, but very different geographically than the "West Asian" component. But:
These results can be explained if the new genetic material that arrived in Germany was a composite of two elements: EHG and a type of Near Eastern ancestry different from that which was introduced by early farmers (also suggested by PCA and ADMIXTURE; Fig. 2, SI5, SI6).
So, it seems that there is no contradiction after all and both EHG (which is related to "Ancient North Eurasians") and another type of Near Eastern ancestry (=West_Asian) arrived after 5kya.

1939 strikes back

It is amazing how well this was anticipated by Carleton Coon in 1939. Back then much of West Eurasia was an archaeological/anthropological terra incognita, there was no radiocarbon dating, no DNA, no computers, not even serious multivariate statistics. And yet:
We shall see, in our survey of prehistoric European racial movements, 8 that the Danubian agriculturalists of the Early Neolithic brought a food-producing economy into central Europe from the East. They perpetuated in the new European setting a physical type which was later supplanted in their original home. Several centuries later the Corded people, in the same way, came from southern Russia but there we first find them intermingled with other peoples, and the cul-tural factors which we think of as distinctively Corded are included in a larger cultural equipment. [...] On the basis of the physical evidence as well, it is likely that the Corded people came from somewhere north or east of the Black Sea. The fully Neolithic crania from southern Russia which we have just studied include such a type, also seen in the midst of Sergi's Kurgan aggregation. Until better evidence is produced from elsewhere, we are entitled to consider southern Russia the most likely way station from which the Corded people moved westward.
And in 2015:
Our results support a view of European pre-history punctuated by two major migrations: first, the arrival of first farmers during the Early Neolithic from the Near East, and second of Yamnaya pastoralists during the Late Neolithic from the steppe (Extended Data Fig. 5).
In 1939:
Linguistically, Indo-European is probably a relatively recent phenomenon, which arose after animals had been tamed and plants cultivated. The latest researches find it to be a derivative of an initially mixed language, whose principal elements were Uralic, called element A, and some undesignated element B which was probably one of the eastern Mediterranean or Caucasic languages. 5 The plants and animals on which the Somewhere in the plains of southern Russia or central Asia, the blending of languages took place which resulted in Indo-European speech. This product in turn spread and split, and was further differentiated by mixture with the languages of peoples upon whom it, in one form or other, was imposed. Some of the present Indo-European languages, in addition to these later accretions from non-Indo-European tongues, contain more of the A element than others, which contain more of the B. The unity of the original " Indo- Europeans," could not have been of long duration, if it was ever complete. 
In 2015:
These results can be explained if the new genetic material that arrived in Germany was a composite of two elements: EHG and a type of Near Eastern ancestry different from that which was introduced by early farmers (also suggested by PCA and ADMIXTURE; Fig. 2, SI5, SI6). We estimate that these two elements each contributed about half the ancestry each of the Yamnaya (SI6, SI9), explaining why the population turnover inferred using Yamnaya as a source is about twice as high compared to the undiluted EHG.
The EHG is still flimsy as it's only two individuals from Karelia and Samara who are very similar to each other. It's hard not to imagine that the hunter-gatherer from Russian Karelia (outside any proposed PIE homeland) would be speaking a similar language as his Samara counterpart. Did they both speak "element A" and was PIE formed when the "southern" steppe hunter-gatherers came into contact with "element B" people from the Caucasus? Short of a time machine, we can never say for sure. This might very well be an answer to the conundrum of Uralic/Proto-Kartvelian borrowings. There is simply no geographical locale in which these two language families neighbor each other: Northwest, Northeast Caucasian speakers and the pesky Greater Caucasus intervene. But, maybe there was no such locale, and these borrowings aren't due to some "PIE people" living adjacent to Uralic and Proto-Karvelian speakers but the "PIE people" being a mix of an element A (EHG) that was (or interacted with) Uralic and another element B (Armenian-like) that was (or interacted with) Proto-Kartvelian.

Urheimat (or not?)

The authors of the current paper are agnostic about the PIE homeland:
We caution that the location of the Proto-Indo-European9,27,29,30 homeland that also gave rise to the Indo-European languages of Asia, as well as the Indo-European languages of southeastern Europe, cannot be determined from the data reported here (SI11). Studying the mixture in the Yamnaya themselves, and understanding the genetic relationships among a broader set of ancient and present-day Indo-European speakers, may lead to new  insight about the shared homeland.
Whatever the ultimate answer will be, it seems that Coon was right that "The unity of the original " Indo- Europeans," could not have been of long duration, if it was ever complete." If PIE=EHG (as Anthony and Ringe suggest), then "from the crib", PIE got half its ancestry from a non-IE, Near Eastern source. Conversely, if PIE=Near East (as I suggested) then "from the crib", PIE got half of its ancestry from a non-IE, Eastern European source. The "Yamnaya" seems to max out in Norwegians at around half, which means that they are about a quarter Proto-Indo-European genetically, regardless of which theory is right.

These two possibilities (as well as the third one of PIE being neither-nor, but rather a linguistic mixture of the languages of the EHG and Near East) are testable. The Anthony/Ringe version of the steppe hypothesis predicts pre-Yamnaya expansions from the steppe. Whether these happened and what was their makeup can be tested: if they did occur and they did lack "Near Eastern" ancestry, then the steppe hypothesis will be proven. PIE in the Near East, on the other hand, predicts that some PIE languages (certainly the Anatolian ones) will be a "within the Near East" expansion. If such migrations did occur and they lacked "EHG" ancestry, then some variant of the Gamkrelidze/Ivanov model will be proven. Or, the truth might be that everywhere where Indo-Europeans arrive they carry a blend of "West Asian" and "EHG", supporting the third possibility. Time will tell.

In the interim, I am curious about how much Yamnaya ancestry existed in different parts of Europe (all of the post-5kya samples in this study come from Germany, with a couple from Hungary). In northern Europe, all populations seem to have less Yamnaya ancestry than the Corded Ware: there it must have declined. But, modern Hungarians have more than Bronze Age Hungarians: there it must have increased.

Germany and a slice of Hungary is a very narrow window through which to see the whole of Europe and these results must be tested by looking at samples from beyond the "heartland". I do hope that some kind of Moore's law operates in the world of ancient DNA, and in three more years we'll be reading studies about thousands of ancient individuals.

bioRxiv doi: http://dx.doi.org/10.1101/013433
Massive migration from the steppe is a source for Indo-European languages in Europe

Wolfgang Haak , Iosif Lazaridis , Nick Patterson , Nadin Rohland , Swapan Mallick , Bastien Llamas , GuidoBrandt , Susanne Nordenfelt , Eadaoin Harney , Kristin Stewardson , Qiaomei Fu , Alissa Mittnik , Eszter Banffy ,Christos Economou , Michael Francken , Susanne Friederich , Rafael Garrido Pena , Fredrik Hallgren , ValeryKhartanovich , Aleksandr Khokhlov , Michael Kunst , Pavel Kuznetsov , Harald Meller , Oleg Mochalov ,Vayacheslav Moiseyev , Nicole Nicklisch , Sandra L. Pichler , Roberto Risch , Manuel A. Rojo Guerra , ChristinaRoth , Anna Szecsenyi-Nagy , Joachim Wahl , Matthias Meyer , Johannes Krause , Dorcas Brown , DavidAnthony , Alan Cooper , Kurt Werner Alt , David Reich

We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost four hundred thousand polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of western and far eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ~8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary, and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ~24,000 year old Siberian6. By ~6,000-5,000 years ago, a resurgence of hunter-gatherer ancestry had occurred throughout much of Europe, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ~4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ~3/4 of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ~3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for the theory of a steppe origin of at least some of the Indo-European languages of Europe.

Link

January 23, 2015

Ancient mtDNA from collective burials in Germany

Journal of Archaeological Science Volume 51, November 2014, Pages 174–180

Collective burials among agro-pastoral societies in later Neolithic Germany: perspectives from ancient DNA

Esther J. Lee et al.

Ancient DNA research has focused on the genetic patterns of the earliest farmers during the European Neolithic, especially with regards to the demographic changes in the transition from hunting and gathering to agriculture. However, genetic data is relatively lacking after this earliest transition period, when societies had fully adapted to new agrarian lifestyles specific to their local environment. During the later central European Neolithic (ca. 3600–2800 cal BC), large-scale collective burials and monumental architecture appeared within the landscape of many agricultural societies. This phenomenon has been argued to represent the emergence of a “collective” identity. With the aim of exploring genetic-based relations among individuals collectively buried, we obtained human skeletal remains of nearly 200 individuals from four later Neolithic collective burial sites in Germany: Calden, Odagsen, Groβenrode, and Panker. We successfully reproduced reliable mitochondrial DNA (mtDNA) haplotypes from eight Neolithic individuals, which were assigned to haplogroups H, HV0, and X2. Shared haplotypes observed among individuals within Calden and Odagsen suggest that genetic relations may have shaped the arrangement of the deceased within later Neolithic agricultural groups.

Link

December 14, 2013

Ancient mtDNA from Rössen culture in Wittmar, Germany

Archaeological and Anthropological Sciences December 2013

Ancient DNA insights from the Middle Neolithic in Germany

Esther J. Lee et al.

Genetic studies of Neolithic groups in central Europe have provided insights into the demographic processes that have occurred during the initial transition to agriculture as well as in later Neolithic contexts. While distinct genetic patterns between indigenous hunter-gatherers and Neolithic farmers in Europe have been observed, it is still under discussion how the genetic diversity changed during the 5,000-year span of the Neolithic period. In order to investigate genetic patterns after the earliest farming communities, we carried out an ancient mitochondrial DNA (mtDNA) analysis of 34 individuals from Wittmar, Germany representing three different Neolithic farming groups (ca. 5,200–4,300 cal bc) including Rössen societies. Ancient DNA analysis was successful for six individuals associated with the Middle Neolithic Rössen and observed haplotypes were assigned to mtDNA haplogroups H5, HV0, U5, and K. Our results offer perspectives on the genetic composition of individuals associated with the Rössen culture at Wittmar and permit insights into genetic landscapes in central Europe at a time when regional groups first emerged during the Middle Neolithic.

Link

October 10, 2013

Ancient central European mtDNA across time (Brandt, Haak et al. and Bollongino et al.)

Two important new papers appeared in Science today. In the first one (Brandt, Haak et al.), researchers compiled mtDNA results from 364 prehistoric central Europeans from the early Neolithic to the early Bronze Age, spanning about four millennia of history. Importantly they uncover not a smooth transition between early Neolithic farmers and modern Europeans, but a punctuated series of haplogroup frequency changes that cannot really be explained by genetic drift in a single European population evolving over time. Hopefully this kind of research can be repeated in other parts of the world, as it provides a way to see evolution and migration as it happens.

Earlier work has disproved the hypothesis that modern Europeans are simply "acculturated" hunter-gatherers, and this newer research disproves the idea that they are simply the descendants of early farmers, little modified since the beginning of the Neolithic.

I am sure that myself and others will spend some time trying to digest the wealth of information present in the paper and its supplementary materials. Yet, one conclusion can already be made, that migrationism is alive and well. Anyone adhering to a "pots not people" paradigm will find difficult to explain the sharp discontinuities found in the genetic record. European foragers contrast with the earliest farmers, who, in turn, contrast with and the Late Neolithic copper cultures that supplanted them a few thousand years later and spawned the Bronze Age world. If pots aren't people, it's strange that archaeological cultures defined largely by pots (right) also appear to mark genetic contrasts.

These discontinuities are most evident in Figure 3 from the paper:


You may follow the grey line to see how central Europe, once populated exclusively by hunter-gatherers, experienced a virtual disappearance of their matrilineages for almost two thousand years after the advent of farming.  Then, between the Middle to Late Neolithic, around five thousand year ago, the hunter-gatherers make their re-appearance before their lineages converge to their modern (minority) frequency. The authors present a model of migration to explain these events, illustrated in a movie in the supplementary material, and also in the figure on the left.

Of particular interest is a set of haplogroups marked by the yellow line (I, U2, T1, R) and are most strongly represented in the Unetice and Corded Ware samples before reverting to a small minority in the present-day. These may be potentially very informative to understand the c. 5,000-year old ago upheaval. I reproduce below three of the genetic distance maps from the supplement for the three latest cultures (CWC: Corded Ware; BBC: Bell Beaker; and UC: Unetice):





I note the European-ness of Bell Beaker (probably due to elevated frequencies of haplogroup H) and the eastern European-ness/west Asian-ness of Corded Ware/Unetice.

Moving on to the next shorter paper by Bollongino et al. which produces evidence for an interesting hypothesis: that hunter-gatherers did not disappear in central Europe after the introduction of farming, but some of their descendants persisted for at least two thousand years afterwards:
In summary, the results of 14C and stable isotope analysis, together with the DNA evidence, suggest that the Blätterhöhle individuals are sampled from three distinct populations: (i) Mesolithic hunter-gatherers, (ii) Neolithic farmers, and (iii) Neolithic fisher-hunter-gatherers (special-izing in freshwater fish). The latter two notably date to the fourth mil-lennium BC, which is around 2000 years after the introduction of farming to Central Europe.
I was reminded of an older paper about first contact between farmers and hunter-gatherers. An important consequence of the second paper is that hunter-gatherer lineages in modern Europeans may have come not only from outlying areas where foragers persisted in greater numbers, but also from within the farming realm itself.

Science 11 October 2013: Vol. 342 no. 6155 pp. 257-261 DOI: 10.1126/science.1241844

Ancient DNA Reveals Key Stages in the Formation of Central European Mitochondrial Genetic Diversity 

Guido Brandt, Wolfgang Haak et al.

The processes that shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42,000 years ago and the immigration of Neolithic farmers into Europe ~8000 years ago appear to have played important roles but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5500 to 1550 calibrated years before the common era). We used this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity.

Link

Science DOI: 10.1126/science.1245049

2000 Years of Parallel Societies in Stone Age Central Europe

Ruth Bollongino et al.

Debate on the ancestry of Europeans centers on the interplay between Mesolithic foragers and Neolithic farmers. Foragers are generally believed to have disappeared shortly after the arrival of agriculture. To investigate the relation between foragers and farmers, we examined Mesolithic and Neolithic samples from the Blätterhöhle site. Mesolithic mitochondrial DNA sequences were typical of European foragers, whereas the Neolithic sample included additional lineages that are associated with early farmers. However, isotope analyses separate the Neolithic sample into two groups: one with an agriculturalist diet and one with a forager and freshwater fish diet, the latter carrying mitochondrial DNA sequences typical of Mesolithic hunter-gatherers. This indicates that the descendants of Mesolithic people maintained a foraging lifestyle in Central Europe for more than 2000 years after the arrival of farming societies.

September 02, 2013

EAA 2013 abstracts

By the beginning of the 6th Millennium cal BC, the first farmers reached the Carpathian Basinwhere the last transition to food production and sedentary life took place. The early neolithic groups became restructured both in their cultural and genetic composition in the 6th and 5th Millennium BC, affected by at least five major Northern Balkan impulses. The western part of the area became a major communication zone, mediating between South Eastern and Central Europe. Our working group has been focusing on this early population history of Eastern Hungary and of Transdanubia, developing and comparing ancient DNA, stable isotope, osteological and archaeological data gained from not less than 600 neolithic skeletons (6000–4300 cal BC).  
In the session we would like to give an account of the DNA and stable isotope (SR, N, C) analysis, carried out within the frames of a three-year interdisciplinary project funded by the German Research Foundation along with the co-evaluation of these results with osteology and zooarchaeology, as well as giving a comparative interpretation of this data within our present socioarchaeological knowledge.
The megalithic past of the Bronze Age kurgans of the North Pontic Region 
The Early Bronze Age (EBA) burial mounds (kurgans) in the western part of the North Pontic Region (NPR) display a tendency to be erected over earlier megalithic ritual constructions. The initial purpose of these megalithic structures might have been cosmology-related. In succeeding time periods the initial astronomic purpose could have been forgotten and these megalithic sites became designated at sacred places suited for distinguished burials. Megalithic elements comprising the initial constructions became incorporated into the subsequent burials. The Revova kurgan from western NPR is one such construction. It was erected over a megalithic structure in a shape of a tortoise with the stone elements of the construction being astronomically aligned. An assembly of disarticulated human remains deposited in the center of the construction dated to the Eneolithic (4200 BC). On the other hand, the layout of stones comprising the “Tortoise” appears to most accurately line up with the movement of celestial objects as they appeared on the sky around 6300 BC. Mitochondrial DNA lineage extracted from the remains was characteristic to the Mesolithic/Neolithic hunter-gatherer populations from northern Europe as well as Bronze Age groups from south Siberia. 
The spread of domestic pig in the central and Eastern part of the Romanian territory described by the ancient mithochondrial DNA
Previous genetic analysis showed the presence of two different haplotypes for domestic pigs from 11 different sites in the South-Eastern part of Romania: the Near-Eastern haplotype ANC-Y1-5A, for 18 individuals, and ANC-Aside european haplotype, for 8 individuals. This study reveals the genetic signature for other 52 samples (5000–3500 BC, from 7 archaeologic sites) covering the central and Eastern parts of Romania. After the DNA extraction, PCR, and sequencing, no ANC-Aside haplotype was found, but, apart from the Near-Eastern ANC-Y1-5A haplotype, identified in the majority of domestic pig samples, the european ANC-Cside haplotype (generally identified in the wild boars), was also found in three domestic pigs from Poduri, Ghigoiesti and Trusesti. The wide spread of the wild boar with the ANC-Cside haplotype not only on the entire Romanian territory, but also, as previously shown, in it’s close proximity, and the emergence of this genetic signature in both wild and domestic pigs from three different sites could support the idea of a local domestication of the wild boar after 4500 BC, in this specific area.
The genetic make-up of the Linear Pottery culture
The Linear Pottery culture (LBK) is one of the first Central European Neolithic farming cultures marking the transition from a hunter-gatherer to a farming lifestyle. The LBK is thought to have originated from Early Neolithic cultures in the Carpathian Basin from where it extended across Europe over a vast distribution area spanning from the River Rhine to the Ukraine. Consequently, its role during the process of Neolithisation in Central Europe is subject of a long-standing debate in archaeology, anthropology and human genetics. Ancient DNA studies have provided direct insights into Mesolithic and Neolithic mitochondrial diversity indicating genetic discontinuity between Central Europe’s autochthonous hunter-gatherers and LBK populations. Comprehensive population genetic analyses utilizing large databases of present-day populations have disclosed genetic affinities of the LBK to the modern-day Near East, Anatolia and the Caucasus, supporting genetic influx from this region into Central Europe at the advent of farming and explaining the apparent genetic discontinuity between foragers and farmers. We will summarize the inferences that have been drawn from 108 LBK data to provide an overview of genetic diversity of the first farming communities in Central Europe, which represents an invaluable genetic perspective for the discussion of the Neolithic in the Carpathian Basin.
Bell Beaker child burials and their gender identity in the light of DNA analysis
The DNA analysis of 53 child burials from the Bell Beaker cemetery at Hostice-I produced data on 21 sexed individuals. Out of 14 burials with male gender attributes were 12 individuals biologically male and two determinate as women. Cases of girls that were brought up as boys probably existed in 3rd Millennium BC burial customs. Out of seven children buried in the female position only 1 was actually biological female (juvenile 15–20 years) and 6 male (2 juvenile 15–19/20 years). That means four boys (aged 3–4, 7, 8–12, 15) were in fact buried as women. Such a result is in line with known demographic unbalance within Beaker cemeteries. Most young girls were not buried at the communal cemetery and considerable number of boys were buried in the female fashion. This is rather high number of cases when the masculine attributes were downplayed in the burial customs and it is hard to interpret whether they were boys supposed to be brought up as women or they had yet no right to act as men, unlike some other sub-adult boys, perhaps members of families with ascribed hereditary warrior status. It almost seems that some young boys were socially considered to be girls, perhaps until ceremonial rite of passage, social initiation of some kind.
Ancient Human DNA – A problem of interpretation
The problem with ancient human DNA is not contamination with modern human DNA any more. This still happens, but aDNA scientists can now recognise it and deal with it. The problem is with the overinterpretation of results. Only a few mitochondrial and Y chromosome aDNA sequences may be obtained from a burial assemblage, but these are interpreted in a population genetics framework which incorporates DNA sequences obtained from present day populations. This type of analysis ignores the possibility that social structures can affect genetic outcomes, as is seen in traditional societies and has recently been recognised by evolutionary geneticists. Societies practising patrilocal exogamy versus endogamy have been studied and the mtDNA and Y chromosomal haplotype diversity analysed. Patrilocal societies show high mtDNA diversity while Y haplotype diversity is reduced. Endogamous societies do not show the reduction in Y diversity, but mtDNA diversity is maintained. Ancient DNA results from several Neolithic sites can therefore be interpreted to identify the type of social structure present. Patrilocal exogamy is the most parsimonious interpretation and this is corroborated by Sr isotope studies from LBK sites.
 Ancient DNA discloses multiple migrations into Central Europe during the Neolithic
The Central European Neolithic is characterised by a succession of differentiated archaeological cultures indicating a period of fundamental cultural change. A recurrent question in archaeology and anthropology is whether cultural change in prehistory was accompanied by variation in the gene pool of associated populations. Ancient DNA studies based on mitochondrial DNA revealed a discontinuity between Central Europe’s autochthonous hunter-gatherers and their early farmers and between the latter and the present-day population, suggesting further migration events after the initial Neolithisation. However, to date little attention has been drawn to cultural and potentially population changes in subsequent Neolithic periods. To investigate this issue, we conducted a large chronological study including a succession of nine cultures from the Mittelelbe-Saale region, Saxony-Anhalt, Germany to reconstruct a detailed temporal profile of cultural and genetic diversity in Central Europe. The presented diachronic study spans overall 3,950 years from the beginning of the Neolithic period and the introduction of producing subsistence strategies ~5,500 BC to the appearance of structured chiefdoms in the Early Bronze Age ~2,200–1,550 BC. This transect through time identified multiple population dynamic events during the Neolithic, which involved genetic influx from various regions in Europe.
 Ancient DNA and isotope analysis of the Starčevo graves at Alsónyék-Bátaszék
Between 2006 and 2009 at Alsónyék-Bátaszék a settlement with 26 graves of the Starčevo culture were unearthed. More than 400 various features belonged to this early Neolithic period on an extension of 80 hectares. The archaeological findings underline the significance of Alsónyék-Bátaszék, which is to date the largest Starčevo site uncovered in present-day Hungary. We analysed the 26 Starčevo burials from Alsónyék from ancient DNA and stable isotopic aspects, involving them in our three-year bioarchaeological Neolithic project. The excellent DNA preservation made it possible to gain reproduced mitochondrial DNA results from all skeletons, and we could additionally type the Y chromosome in 5 of the male individuals. The strontium (87Sr/86Sr) and oxygen (δ18Op) isotopic data obtained an insight into the mobility and kinship system of the population. The carbon (δ13C) and nitrogen (δ15N) isotope analyses of the skeletons supported a basis for a diet reconstruction, supplementing the archaeozoological proceedings of the site. Our results from the Alsónyék-Bátaszék Starčevo specimens, dated between ca. 5800-5500 cal BC, denote a milestone of the early Neolithic bioarchaeological studies in Transdanubia.
 6–5th millennium BC cultural changes in Western Hungary tested by ancient DNA
Western Hungary (Transdanubia) was one of the key regions at the process of Neolithisation in Central Europe. The Starcevo culture, representing the earliest farmers on this region, settled down at latest 5750 cal BC south of the Lake Balaton. It had a major role in the formation of the Linearbandkeramik culture in Transdanubia. The following Sopot, Lengyel cultures of the late Neolithic and Early Copper Age Transdanubia show repeated cultural influences from the Balkan, besides local extant cultural traditions. 
The focus of our study is the process of these cultural changes in Transdanubia, in the view of ancient DNA, investigating mitochondrial and Y chromosomal lineages and markers. A total of 292 skeletons were sampled and processed, with an overall success rate of 89% for mitochondrial DNA. Comparing the mitochondrial and Y chromosomal results with other published data and evaluating them with population genetic analyses, we gained a peerless insight into the population history of Western Hungary. 
Our study may give an additional help to prehistoric archaeology, for a better understanding of the nature of cultural changes, supporting it with a new type of evidence, in order to see Transdanubia as a mediating area between South East and Central Europe.

August 27, 2013

European hunter-gatherers acquired pigs with Near Eastern and European mtDNA

This is a nice demonstration of transfer of domesticated animals from Neolithic farmers to European hunter-gatherers. (Red=European, Yellow=Near Eastern).

Related: Ottoni et al. (2012).

Nature Communications 4, Article number: 2348 doi:10.1038/ncomms3348

Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe

Ben Krause-Kyora et al.

Mesolithic populations throughout Europe used diverse resource exploitation strategies that focused heavily on collecting and hunting wild prey. Between 5500 and 4200 cal BC, agriculturalists migrated into northwestern Europe bringing a suite of Neolithic technologies including domesticated animals. Here we investigate to what extent Mesolithic Ertebølle communities in northern Germany had access to domestic pigs, possibly through contact with neighbouring Neolithic agricultural groups. We employ a multidisciplinary approach, applying sequencing of ancient mitochondrial and nuclear DNA (coat colour-coding gene MC1R) as well as traditional and geometric morphometric (molar size and shape) analyses in Sus specimens from 17 Neolithic and Ertebølle sites. Our data from 63 ancient pig specimens show that Ertebølle hunter-gatherers acquired domestic pigs of varying size and coat colour that had both Near Eastern and European mitochondrial DNA ancestry. Our results also reveal that domestic pigs were present in the region ~500 years earlier than previously demonstrated.

Link

August 04, 2013

Archaeology: The milk revolution

A couple of interesting quotes from this story:
That next step happened slowly, and it seems to have required the spread of lactase persistence. The LP allele did not become common in the population until some time after it first emerged: Burger has looked for the mutation in samples of ancient human DNA and has found it only as far back as 6,500 years ago in northern Germany. 
 ...
Some of the LeCHE participants are now probing further back in time, as part of a project named BEAN (Bridging the European and Anatolian Neolithic), which is looking at how the first farmers and herders made their way into Europe. Burger, Thomas and their BEAN collaborators will be in Turkey this summer, tracing the origins of the Neolithic using computer models and ancient-DNA analysis in the hope of better understanding who the early farmers were, and when they arrived in Europe.

October 17, 2012

Ancient mtDNA haplogroup X2 from Central Europe

Davidski reminds me of a paper by Lee et al. I had posted the abstract of, but did not comment on. He highlights the fact that mtDNA haplogroup X2 has been detected at this site (3.6-2.8ky cal BC) but not in earlier LBK Neolithic Europeans. Furthermore, he attributes the arrival of X2 in Europe to "Northwest Eurasians":
Reading the quotes below, I can’t help thinking that X2 lineages in Europe might be associated with the arrival of the so called Northwest Eurasians of North/Central/East Europe and the North Caucasus, while X1 with the earlier migrations of the Sardinian-like Southwest Eurasians of Mediterranean Europe, North Africa and the Near East.
However, mtDNA haplogroup X2 seems to have originated in the Near East:
Finally, phylogeography of the subclades of haplogroup X suggests that the Near East is the likely geographical source for the spread of subhaplogroup X2, and the associated population dispersal occurred around, or after, the LGM when the climate ameliorated. The presence of a daughter clade in northern Native Americans testifies to the range of this population expansion.
Moreover, it occurs at a higher frequency in Southern Europeans than Northern Europeans and is well-represented in the Caucasus, Near East, and even Africa. These twin facts are inconsistent with it being related to "Northwest Eurasians", however that hypothetical people is defined.

Of related interest, mtDNA haplogroup X2b has been detected in Iron Age "princely burials" from the same location and by the same group. Also from Reidla et al.:
The sister groups X2b and X2c (X1 and X2, respectively, in the work of Herrnstadt et al. 2002) encompass one-third of the European sequences (excluding the samples from the North Caucasus). It is of interest that some North African sequences (from Morocco and Algeria) belong to X2b as well. Subhaplogroup X2b shows a diversity that is consistent with a postglacial population expansion in both West Eurasia and North Africa.
Fernandes et al. (2012) consider X2b to be of European origin. X2 has been discovered in a Megalithic long mound from France (4.2ky cal BP), and in abundance at Treilles (c. 3,000 BC), in the latter case associated with a predominantly Y-haplogroup G2a (with some I-P37.2) population. In Jean Manco's excellent compendium, X2b is also listed as being present in Neolithic Portugal (3,400 years BC), and X2j in Neolithic Germany (4625-4250 BC); the latter is said to be "North African" by Fernandes et al. (2012).

Therefore, we can probably reject Davidski's speculation...
So, X2 has been located at multiple late Neolithic sites in Central Europe, including the Corded Ware burial ground at Eulau, Eastern Germany. Of course, that’s also where Y-chromosome haplogroup R1a was found (see here). I suspect this wasn’t a coincidence and it’s likely these markers entered Europe together from the east, probably between 4,000 and 3,000 B.C.
X2 shows no association with northern Europeans at present, and occurs in ancient DNA samples from Western Europe that show no indication of being related to Y-haplogroup R1a at all, and even precede the hypothetical 4-3ky BC entry window.

Also of interest is that no X2 was mentioned in recent published data from Ukraine and West Siberia, and none of it was detected in Mesolithic Europeans. So, it seems that X2 variants entered Europe during the Neolithic, and there is no indication that they did so with Davidski's hypothetical R1a-bearing Northwest Europeans.

September 13, 2012

Polish and German Y-chromosomes

I have often bemoaned the use of present-day populations as stand-ins for dealing with the subject of very old archaeological phenomena such as the Neolithic transition. Of course, I understand that until a few years ago, this was all we had to work with. But, this idea is now suspect, having been made so by a two-pronged attack. On the ancient DNA side, researchers have consistently discovered that for the better part of prehistory, ancient populations did not match modern ones: even if the constituent elements of later evolution could be identified, they were still in polarized non-admixed form as in the case of the Neolithic Swedes. On the recent side, researchers have used surnames or even toponyms to show that ethnic admixture in the recent historical past has shifted Y-chromosome frequencies around.

A new paper in EJHG follows on this tradition by comparing pre- and post-WWII patterns of Y chromosome variation in Germany and Poland. Y-haplogroup frequencies can be seen on top left. From the caption: "Phylogenetic relationship and frequencies of Y-chromosomal haplogroups in the studied populations. Ka Kaszuby; Ko Kociewie; Ku Kurpie; Lu Lusatia; Sl Slovakia; Me Mecklenburg; Ba Bavaria."

It is important to note that the researchers were able to study pre-war populations, because most everybody knows where their patrilineal ancestor lived less than 100 years ago. But, European history consists of many events whose effects on the current population are less known, because they occurred at an older time. In some cases, populations may have migrated (such as the Germans of eastern Europe following WWII), in others populations that have once existed there have almost disappeared, or become much less numerically significant (such as the Ashkenazi Jews due to persecution during WWII and after it through migration to Israel and elsewhere, or various Christian and Jewish communities that once flourished throughout the Middle East). Other, less known groups, such as the Old Prussians or the Jassic speakers of Hungary have been presumably absorbed by surrounding majorities, or through a process of elite dominance.

In many cases, the available information, in the form of linguistic, genealogical, or historical evidence, can be used to remove layers of admixture, migration, and extinction in history; but, the gap between the deep prehistoric past and the recent, historical one cannot be bridged by these methods alone. Ultimately, ancient DNA researchers must close in on the present by targeting more recent populations for analysis. As the realization of genetic change continues to amass on both sides of the divide, I suspect that this will come naturally, although I do expect some reticence to the findings as they begin to touch upon the most cherished origins traditions of the multitude of extant European nations.


European Journal of Human Genetics advance online publication 12 September 2012; doi: 10.1038/ejhg.2012.190

Contemporary paternal genetic landscape of Polish and German populations: from early medieval Slavic expansion to post-World War II resettlements

Krzysztof Rebala et al.

Abstract

Homogeneous Proto-Slavic genetic substrate and/or extensive mixing after World War II were suggested to explain homogeneity of contemporary Polish paternal lineages. Alternatively, Polish local populations might have displayed pre-war genetic heterogeneity owing to genetic drift and/or gene flow with neighbouring populations. Although sharp genetic discontinuity along the political border between Poland and Germany indisputably results from war-mediated resettlements and homogenisation, it remained unknown whether Y-chromosomal diversity in ethnically/linguistically defined populations was clinal or discontinuous before the war. In order to answer these questions and elucidate early Slavic migrations, 1156 individuals from several Slavic and German populations were analysed, including Polish pre-war regional populations and an autochthonous Slavic population from Germany. Y chromosomes were assigned to 39 haplogroups and genotyped for 19 STRs. Genetic distances revealed similar degree of differentiation of Slavic-speaking pre-war populations from German populations irrespective of duration and intensity of contacts with German speakers. Admixture estimates showed minor Slavic paternal ancestry (~20%) in modern eastern Germans and hardly detectable German paternal ancestry in Slavs neighbouring German populations for centuries. BATWING analysis of isolated Slavic populations revealed that their divergence was preceded by rapid demographic growth, undermining theory that Slavic expansion was primarily linguistic rather than population spread. Polish pre-war regional populations showed within-group heterogeneity and lower STR variation within R-M17 subclades compared with modern populations, which might have been homogenised by war resettlements. Our results suggest that genetic studies on early human history in the Vistula and Oder basins should rely on reconstructed pre-war rather than modern populations.

Link

September 11, 2012

Ancient mtDNA from late Neolithic collective burials in Germany

Journal of Archaeological Science doi:10.1016/j.jas.2012.08.037

Collective burials among agro-pastoral societies in later Neolithic Germany: Perspectives from ancient DNA

Esther J. Lee et al.

Abstract

Ancient DNA research has focused on the genetic patterns of the earliest farmers during the European Neolithic, especially with regards to the demographic changes in the transition from hunting and gathering to agriculture. However, genetic data is relatively lacking after this earliest transition period, when societies had fully adapted to new agrarian lifestyles specific to their local environment. During the later central European Neolithic (ca. 3600 - 2800 cal BC), large-scale collective burials and monumental architecture appeared within the landscape of many agricultural societies. This phenomenon has been argued to represent the emergence of a “collective” identity. With the aim of exploring genetic-based relations among individuals collectively buried, we obtained human skeletal remains of nearly 200 individuals from four later Neolithic collective burial sites in Germany: Calden, Odagsen, Großenrode, and Panker. We successfully reproduced reliable mitochondrial DNA (mtDNA) haplotypes from eight Neolithic individuals, which were assigned to haplogroups H, HV0, and X2. Shared haplotypes observed among individuals within Calden and Odagsen suggest genetic relations may have shaped the arrangement of the deceased within later Neolithic agricultural groups.

Link

September 05, 2012

East to West across Eurasia

A couple more interesting abstracts from the DNA in Forenscics 2012.


Genetic journey of the N1c haplogroup
Pamjav H, Nemeth E, Feher T, Volgyi A
Binary and Y-STR polymorphisms associated with the NRY region of the human Y chromosome preserve the paternal genetic legacy that has persisted to the present, permitting inference of human evolution, population migration and demographic history.The NRY region of the Y chromosome acts much like mtDNA to reveal the structure among human populations and possiblyto infer the order and timing of their descents. In the present study, we have investigated the originof haplogroup N1c-Tat phylogeographic structure and the genetic relationship of Eurasianpopulations by examining STR variation in a large number of individuals. We have identified 54samples as the haplogroup N1c-Tat from 5 population groups (N=632). To place the results into awider geographic context, we included 209 samples from published sources and 296 samples from the FTDNA public database into the phylogenetic analysis. According to previous studieshaplogroup N-M231 is of East Asian ancestry. Our results suggest that N1c-Tat mutation probably originated in South Siberia 8-9 thousand years ago and had spread through the Urals into the European part of present-day Russia. Its distribution is not fully correlated with the spread of Uralic languages. Turkic-speaking ethnic groups in South Siberia have high N1c-Tat presence and STR variance, while the N1c-L550 subgroup largely occurs among non-Uralic-speaking Europeanpopulations. Only the European N1c-Tat (xL550) subgroup can be linked to the spread of Finno-Ugric languages from the Kama-Urals area ~6,000 years ago. The subgroup N1c-L550 cannot be considered Finno-Ugric origin and its carriers might have been assimilated by Indo-European groups, resulting in their spread across Europe in historical times with Vikings and Balto-Slavs. Based on the present study Buryats were dominated by a young, about 800-years old N1c-Tat cluster, which suggest that this ethnic group could be a relatively recent admixture of Mongolian conquerors with a Paleo-Siberian population groups.
Of course these ages should be taken with a grain of salt because it is unclear how they were derived (i.e., whether the "evolutionary mutation rate" was used). Hopefully, someone will treat the  subject of N1c ages with Y-SNPs that do not have the problem of saturation that affects microsatellites. This is an interesting test case, because a ~3-fold change in ages will have important consequences for our understanding of the spread of Finno-Ugric languages into Europe: an earlier date would associate them with the Comb Ceramic, while a later, Bronze Age date would associate them with the Seima-Turbino phenomenon.


Huns in Bavaria? Genetic analyses of an artificially deformed skull from an early medieval cemetery in Burgweinting (Regensburg, Germany)

Schleuder R, Wilde S, Burger J, Grupe G, Forster P, Harbeck M
The morphological examination of an early medieval burial site in Burgweinting, which is dated to the end of the 5th century, revealed one female with an artificially, circularly deformed skull, a practice that is thought to be associated with the arrival of Nomads of the Eurasian steppe, particularly the Huns.    

Individuals with such artificial cranial deformations also can be found in other Late Roman and Early Medieval cemeteries in Europe mostly in the Carpathian basin but only as few isolated cases in Western Europe, where mostly women show such deformations.  
Regarding the artificial cranial deformations it is unclear whether a foreign custom was taken over by Germanic tribes or whether the individuals were members or descendants of Eurasian nomads.  
With the help of the find of Burgweinting, we exemplarily investigated this question.To identify the possible foreign origin of this female with alleged “Asian” skull deformation we sequenced the HVRI and HVRII region of the mitochondrial DNA.  
Our results show that the ancestry of a woman with artificially deformed skull can be linked to an at least partly Asian origin. So this indicates that at least some of the few individuals with skull deformation had not adopted the costume but can be seen as former members or descendants of the hunnish tribal community.   
It will be worthwhile if geneticists can co-operate with physical anthropologists and/or archaeologists more broadly in cases where morphology, or burial customs indicate that a possibly heterogeneous population exists at that site. The above is a good example of that synergy in action.

July 14, 2012

Y chromosomes and mtDNA from late antique Bavaria

One of the papers in the aforementioned volume includes Y-STR and mtDNA data on a burial cemetery from Bavaria dating to the Imperial Roman age. I reproduce the DNA results below; the haplogroup assignments in red are my own and have been estimated with Whit Athey's haplogroup predictor using both Northwest European and Equal priors.


The number of Y-STRs is not sufficient to make very strong haplogroup assignments in some cases. Still, we can probably say that R1b, E1b1b, and I1 were present in the population. I1 might seem more likely than G2a in a few cases, but remember that a couple of G2a men were found in 7th c. Bavaria. E1b1b, another non-typical German haplogroup has also been found in Usedom from the medieval period.

Christina Sofeso, Marina Vohberger, Annika Wisnowsky, Bernd Päffgen, Michaela Harbeck, *

Verifying archaeological hypotheses: Investigations on origin and genealogical lineages of a privileged society in Upper Bavaria from Imperial Roman times (Erding, Kletthamer Feld)



During the years 2005 and 2006 approximately 2000 archaeological
finds ranging from the Neolithic Period to Late Antiquity 
were found on the Kletthamer Feld (Erding, Upper Bavaria). 
Out of this context a burial site was examined comprising 
13 individuals, some of them rich in precious grave goods. The 
inhumations were dated to the second half of the 4th to the first 
half of the 5th century – a time of upheavals in relation to the 
demographic structure of the former Roman province Raetia (today southern Bavaria).

The high proportion of male individuals within the skeletal population as well as the finding of a Roman fibula, which is seen as part of Roman military clothing, led to distinct hypotheses which we have attempted to support in this study. The hypothesis that the skeletal remains reflect a founder population from a Germanic region north of the Danube River could be rejected on the basis of stable isotope analyses. The theory of a buried family clan had to be dismissed as well, or rather, be extended to the scenario of several families being buried there with their servants. The results obtained fit the third presumption best, namely that the buried individuals were the members of a military unit interred with their families.

May 26, 2012

43,000-year old Aurignacian in Swabian Jura

A new paper continues the re-assessment of the radiocarbon dating record in Europe. It pushes the Aurignacian of Central Europe back in time, but not as far back as the appearance of modern humans in Europe. The implication is that the advanced music and art of the Aurignacian did not accompany modern humans as they made their first steps into Europe, but rather developed there.

The authors distinguish between a "strong" version of their model (which would posit a monocentric origin of music/art around the Geissenkoesterle site), and a "weak" one in which these innovations were contributed in parallel by different regions. A better understanding of the origin of different innovations and their assignment to specific groups of modern humans may help us better understand what was the "common core" of behavioral and technological modernity that facilitated the success of our species.

From the paper:

The majority of scholars conclude that the Aurignacian is the earliest signature of the first modern humans in Europe. Recent research suggests that this is not likely to be the case. Benazzi et al. (2011) have shown that the Uluzzian of Italy and Greece is likely to be a modern human industry based on the reanalysis of infant teeth in the archaeological site of Cavallo, and also demonstrated that it dates to 45,000-43,000 cal BP. Other dated examples from other Uluzzian sites (e.g., Higham et al., 2009) fall into the same period, and the Uluzzian is always stratigraphically below the Proto- Aurignacian in Italian sites where both co-occur. This adds an additional level of complexity to the emerging picture of early human dispersals and suggests that the Aurignacian does not represent the earliest evidence of our species in Europe. 
... 
Taken together, these results suggest that modern humans arrived in Europe as early as ~45,000 cal BP and spread rapidly across Europe to as far as southern England between 43,000 and41,000 cal BP. The dates for the lower Aurignacian at Geissenklosterle fall in the same period and appear to pre-date the ages for the Proto- Aurignacian and Early Aurignacian in other regions (Fig. 6). The new results suggest that the caves of the Swabian Jura document the earliest phase of the Aurignacian, and the region can be viewed as one of the key areas in which a variety of cultural innovations, including figurative art, mythical images, and musical instruments, are first documented. These dates are consistent with the Danube Valley serving as an important corridor for the movement of people and ideas (Conard, 2002; Conard and Bolus, 2003). 
... 
The new radiocarbon dates from Geissenklosterle document the presence of the Aurignacian in the Swabian Jura prior to the Heinrich 4 cold phase, with the Early Aurignacian beginning around 42,500 cal BP. In the coming years, excavations in the Swabian Jura will continue and new radiometric dates should contribute to an improved understanding of the spatial-temporal development of the Aurignacian and its innovative material culture.
From the press release:
Researchers from Oxford and Tübingen have published new radiocarbon dates from the from Geißenklösterle Cave in Swabian Jura of Southwestern Germany in the Journal of Human Evolution. The new dates use improved methods to remove contamination and produced ages between began between 42,000 – 43,000 years ago for start of the Aurignacian, the first culture to produce a wide range of figurative art, music and other key innovations as postulated in the Kulturpumpe Hypothesis. The full spectrum of these innovations were established in the region no later than 40 000 years ago.
Journal of Human Evolution doi:10.1016/j.jhevol.2012.03.003

Τesting models for the beginnings of the Aurignacian and the advent of figurative art and music: The radiocarbon chronology of Geißenklösterle

Thomas Higham et al.

The German site of Geißenklösterle is crucial to debates concerning the European Middle to Upper Palaeolithic transition and the origins of the Aurignacian in Europe. Previous dates from the site are central to an important hypothesis, the Kulturpumpe model, which posits that the Swabian Jura was an area where crucial behavioural developments took place and then spread to other parts of Europe. The previous chronology (critical to the model), is based mainly on radiocarbon dating, but remains poorly constrained due to the dating resolution and the variability of dates. The cause of these problems is disputed, but two principal explanations have been proposed: a) larger than expected variations in the production of atmospheric radiocarbon, and b) taphonomic influences in the site mixing the bones that were dated into different parts of the site. We reinvestigate the chronology using a new series of radiocarbon determinations obtained from the Mousterian, Aurignacian and Gravettian levels. The results strongly imply that the previous dates were affected by insufficient decontamination of the bone collagen prior to dating. Using an ultrafiltration protocol the chronometric picture becomes much clearer. Comparison of the results against other recently dated sites in other parts of Europe suggests the Early Aurignacian levels are earlier than other sites in the south of France and Italy, but not as early as recently dated sites which suggest a pre-Aurignacian dispersal of modern humans to Italy by ∼45000 cal BP. They are consistent with the importance of the Danube Corridor as a key route for the movement of people and ideas. The new dates fail to refute the Kulturpumpe model and suggest that Swabian Jura is a region that contributed significantly to the evolution of symbolic behaviour as indicated by early evidence for figurative art, music and mythical imagery.

Link

May 03, 2012

Bell Beakers from Germany: Y-haplogroup R1b

Just in time with my recent speculations about post-Neolithic events affecting Europe, we now have a paper of a Bell Beaker sample from Germany. Like with earlier Neolithic samples there are two camps in trying to explain the Bell Beaker phenomenon: one of them saw only a cultural phenomenon epitomized by burials with the eponymous Bell Beaker pottery; the other saw a true invading population. This is how Carleton Coon described them:
The Dinaric type, with which the Rhenish Bell beakers are associated, is one which entered the western Mediterranean by sea from the east, and eventually moved, by some route yet to be determined in an accurate manner, to the north, and eventually to central Europe.
As such, the Bell Beaker phenomenon is a test case for the pots-not-people paradigm. There is ample physical anthropological evidence that the people of Beaker burials had a distinctive physical type which contrasted with the long-headed type typical of the era, so I have always been on the "people" side of the conflict.

I will update this entry when I read the paper.

American Journal of Physical Anthropology DOI: 10.1002/ajpa.22074

Emerging genetic patterns of the european neolithic: Perspectives from a late neolithic bell beaker burial site in Germany†

Esther J. Lee et al.

Abstract

The transition from hunting and gathering to agriculture in Europe is associated with demographic changes that may have shifted the human gene pool of the region as a result of an influx of Neolithic farmers from the Near East. However, the genetic composition of populations after the earliest Neolithic, when a diverse mosaic of societies that had been fully engaged in agriculture for some time appeared in central Europe, is poorly known. At this period during the Late Neolithic (ca. 2,800–2,000 BC), regionally distinctive burial patterns associated with two different cultural groups emerge, Bell Beaker and Corded Ware, and may reflect differences in how these societies were organized. Ancient DNA analyses of human remains from the Late Neolithic Bell Beaker site of Kromsdorf, Germany showed distinct mitochondrial haplotypes for six individuals, which were classified under the haplogroups I1, K1, T1, U2, U5, and W5, and two males were identified as belonging to the Y haplogroup R1b. In contrast to other Late Neolithic societies in Europe emphasizing maintenance of biological relatedness in mortuary contexts, the diversity of maternal haplotypes evident at Kromsdorf suggests that burial practices of Bell Beaker communities operated outside of social norms based on shared maternal lineages. Furthermore, our data, along with those from previous studies, indicate that modern U5-lineages may have received little, if any, contribution from the Mesolithic or Neolithic mitochondrial gene pool.

Link

January 30, 2012

AAPA 2012 abstracts (part 1)

Here are some interesting abstracts from the 81st Annual Meeting of the American Association of Physical Anthropologists.


Maternal marks of admixture in Cape Coloreds of South Africa.
KRISTINE G. BEATY1, DELISA L. PHILLIPS1, MACIEJ HENNEBERG2 and MICHAEL H. CRAWFORD1.
Previous studies of genetic diversity have suggested that the Cape Coloureds of South Africa are a highly admixed population with genetic roots from indigenous African groups including Khoisans, and the later arrival of Bantu speaking Xhosa farmers. Further genetic contributions came during European colonization of South Africa, which added to the inclusion of largely male European markers to the gene pool. Slaves from Indonesia, Malaysia, Madagascar and India are also thought to have contributed to the genetic makeup of this ethnic group. This study examines the maternal contribution of each of these groups to the genetic diversity of the Cape Coloreds through sequencing of the hypervariable region I of the mitochondrial DNA and through restriction fragment length polymorphism.
A total of 123 individuals were examined for this study. High frequencies of haplogroups L1 and L2 were found at 81.3 percent in this group (100 of the 123 individuals), which indicates that this group has a large African contribution to its mitochondrial makeup. Restrictions of the major European haplogroups identified nine individuals, 7.3 percent of the sample, belonged to haplogroups I and J. Five individuals (4.1 percent of the sample) belonged to the superhaplogroup M, indicating that Asian slaves did contribute to the maternal gene pool. The majority of maternal lineages in this Cape Coloured sample are African in origin, with some European influence and a small contribution from Asian maternal lineages.

Ancient DNA reveals the population origin of the Eastern Xinjiang.
SHIZHU GAO2, HONGJIE LI1, CHUNXIANG LI1 and HUI ZHOU1,3.
Connecting with the Turpan Basin, the Eurasia steppe and the Gansu Corridor, the Eastern region of Xinjiang has played a significant role in the history of human migration, cultural developments, and communications between the East and the West. The population origin, migration and integration of this region have attracted extensive interest among scientists.
In order to research the population origin and movement of the Eastern Xinjiang, genetic polymorphisms studies of the Hami population were conducted. The Hami site is located in the East of Tian-Moutain in Xinjiang, dating back to the Bronze-early Iron Age. Archaeological studies showed that the culture of the Hami site possessed features from both the East and the West. Ancient mtDNA analysis showed that A, C, D, F, G, Z and M7 of the Eastern maternal lines, and W, U2e, U4, and U5aof the Western maternal lines were identified. Tajimas’D test and mismatch distribution analysis show that the Hami population had experienced population expansion in recent time. The demographic analysis of haplogroups suggests that the populations of the Northwest China, Siberia and the Central Asia have contributed to the mtDNA gene pool of the Hami population.
Our study reveals the genetic structure of the early population in Eastern Xinjiang, and its relationships with other Eurasian populations. The results will provide valuable genetic information to further explore the population origin and migration of Xinjiang and Central Asia.


Analysis of Chuvash mtDNA points to Finno-Ugric origin.
ORION M. GRAF1, STEPHEN M. JOHNSON1, JOHN MITCHELL2, STEPHEN WILCOX3, GREGORY LIVSHITS4 and MICHAEL H. CRAWFORD1.
A sample of 92 unrelated individuals from Chuvashia, Russia was sequenced for hypervariable region-I (HVR-I) of the mtDNA molecule. These data have been verified using RFLP analysis of the control region, revealing that the majority exhibit haplogroups H (31%), U (22%), and K (11%), which occur in high frequencies in western and northern Europe, but are virtually absent in Altaic or Mongolian populations. Multidimensional scaling (MDS) was used to examine distances between the Chuvash and reference populations from the literature. Neutrality tests (Tajima’s D (-1.43365) p<0.05, Fu’s FS (-25.50518) p<0.001) and mismatch analysis, which illustrates unimodal distribution, all suggest an expanding population.
The Chuvash speak a Turkic language that is not mutually intelligible to other extant Turkish groups, and their genetics are distinct from Turkic-speaking Altaic groups. Some scholars have suggested that they are remnants of the Golden Horde, while others have advocated that they are the products of admixture between Turkic and Finno-Ugric speakers who came into contact during the 13th century. Earlier genetic research using autosomal DNA markers indicated a Finno-Ugric origin for the Chuvash. This study examines uniparental mitochondrial DNA markers to better elucidate their origins. Results from this study maintain that the Chuvash are not related to Altaic or Mongolian populations along their maternal line, thus supporting the “Elite” hypothesis that their language was imposed by a conquering group —leaving Chuvash mtDNA largely of Eurasian origin. Their maternal markers appear to most closely resemble Finno-Ugric speakers rather than Turkic speakers.


An ancient DNA perspective on the Iron Age “princely burials” from Baden-Wurttemberg, Germany.
ESTHER J. LEE1, CHRISTOPH STEFFEN1, MELANIE HARDER1, BEN KRAUSE-KYORA1, NICOLE VON WURMB-SCHWARK2 and ALMUT NEBEL3.
During the Iron Age in Europe, fundamental social principles such as age, gender, status, and kinship were thought to have played an important role in the social structure of Late Hallstatt and Early Latene societies. In order to address the question of kinship relations represented in the Iron Age “princely burials” that are characterized by their rich material culture, we carried out genetic analysis of individuals associated with the Late Hallstatt culture from Baden-Wurttemberg, Germany. Bone specimens of thirty-eight skeletal remains were collected from five sites including Asperg Grafenbuhl, Muhlacker Heidenwaldle, Hirschlanden, Ludwigsburg, and Schodeingen. Specimens were subjected to DNA extraction and amplification under strict criteria for ancient DNA analysis. We successfully obtained mitochondrial DNA (mtDNA) control region sequences from seventeen individuals that showed different haplotypes, which were assigned to nine haplogroups including haplogroups H, I, K, U5, U7, W, and X2b. Despite the lack of information from nuclear DNA to infer familial relations, information from the mtDNA suggests an intriguing genetic composition of the Late Hallstatt burials. In particular, twelve distinct haplotypes from Asperg Grafenbuhl suggest a heterogeneous composition of maternal lineages represented in the “princely burials”. The results from this study provide clues to the social structure reflected in the burial patterns of the Late Hallstatt culture and implications on the genetic landscape during the Iron Age in Europe.


Genetic snapshot from ancient nomads of Xinjiang.
HONGJIE LI1, SHIZHU GAO2, CHUNXIANG LI1, YE ZHANG1, WEN ZENG3, DONG WEI3 and HUI ZHOU1,3.
Nomads of the Eurasian steppes are known to have played an important role in the transfer commodities and culture among East Asia, Central Asia, and Europe. However, the organization of nomadic societies and initial population genetic composition of nomads were still poorly understood because of few archaeological materials and written history.
In this study, the genetic snapshot of nomads was emerged by examining mitochondrial DNA and Y-chromosome DNA of 30 human remains from Heigouliang (HGL) site in the eastern of Xinjiang, which dated 2000 years ago and associated to the nomadic culture by archaeological studies. Mitochondrial DNA analysis showed that the HGL population included both East Eurasian haplogroups (A, C, D, G, F and Z) and West Eurasian haplogroups (H, K, J, M5 and H). The component of Eastern haplogroups is dominant. The distribution frequency and Fst values of Eastern haplogroups indicated the HGL population presented close genetic affinity to the nearby region modern populations of Gansu and Qinghai, while those of western haplogroups showed similar with Mongolia and Siberia populations. The results implied various maternal lineages were introduced into the HGL population. Regarding the Y chromosomal DNA analysis, nearly all samples belonged to haplogroup Q which is thought to be the mark of the Northern Asian nomads. We identified paternal kinship among three individuals at the same tomb by Y-STR marker.
Combined with archaeological and anthropological investigations, we inferred that the gene flow from the neighboring regions was possibly associated with the expansion of Xiongnu Empire.


Vikings, merchants and pirates at the top of the world: Y-chromosomal signatures of recent and ancient migrations in the Faroe Islands.
ALLISON E. MANN1, EYDFINN MAGNUSSEN2 and CHRISTOPHER R. TILLQUIST1.
The Faroe Islands are a small archipelago in the North Atlantic Ocean. With a current population of approximately 48,000 individuals and evidence of high levels of genetic drift, the Faroese are thought to have remained highly homogeneous since the islands were settled by Vikings around 900CE. Despite their geographic isolation, however, there is historical evidence that the Faroese experienced sporadic contact with other populations since the time of founding. Contact with Barbary pirates in the seventeenth century is documented in the Faroes; there is also the possibility of modern migrations to work in the highly productive fishery. This study set out to distinguish the signal of the original founders from later migrants. Eleven Y-chromosomal STR markers were scored for 139 Faroese males from three geographically dispersed islands. Haplotypes were analyzed using Athey's method to infer haplogroup. Median-joining networks within haplogroups were constructed to determine the phylogenetic relationships within the Faroese and between likely parental populations—Danish, Irish, and Norwegians. Dispersal patterns of individuals around Faroese haplogroups suggest different times of haplotype introduction to the islands. The most common haplogroup, R1a, consists of a large node with a tight network of neighbor haplotypes, such that 68% of individuals are one or two mutational steps away. This pattern may represent the early founder event of R1a in the Faroes. Other distributions, especially of non-Scandinavian haplotypes, document more recent introductions to the islands. The overall pattern is one of a strong founder effect followed by minor instances of later migrations.



Date estimates for major mitochondrial haplogroups in Yemen.
DEVEN N. VYAS1, VIKTOR ČERNÝ2, ALI AL-MEERI3 and CONNIE J. MULLIGAN1.
Yemen occupies a key location as the first stop for anatomically modern humans on a theoretical southern migration route out of Africa. If modern humans did pass through Yemen during the first migrations out of Africa and if they left modern-day descendants, we would expect to see deep divergences in the Yemeni mitochondrial gene tree. Alternatively, if modern humans passed through Yemen but did not leave modern-day descendants or if Yemen was not on the path of these ancient migrations, we would expect more recent dates to be associated with Yemeni mitochondrial haplogroups.
Using 44 previously sequenced mitochondrial genomes as well as 24 newly sequenced mitochondrial genomes from samples collected throughout Yemen, several methods were used to estimate divergence dates of major Yemeni haplogroups including L2, M, R0a and HV. Specifically, phylogenetic trees were generated using MrBayes and maximum likelihood methods. Bayesian and ρ statistic based methods were used to estimate dates of Yemeni haplogroups and these dates were compared with each other, previously published dates for these haplogroups, approximate dates of climatic change that might be expected to correlate with population expansions, and estimates based on archaeological and paleontological evidence for the first migrations out of Africa. These comparisons are intended to cover the range of possible haplogroup divergence dates with respect to the history of early modern humans in southern Arabia.