June 24, 2016

Population history with physically phased genomes

bioRxiv doi: http://dx.doi.org/10.1101/008367

Modeling human population separation history using physically phased genomes

Shiya Song, Elzbieta Sliwerska, Sarah Emery, Jeffrey M Kidd

Phased haplotype sequences are a key component in many population genetic analyses since variation in haplotypes reflects the action of recombination, selection, and changes in population size. In humans, haplotypes are typically estimated from unphased sequence or genotyping data using statistical models applied to large reference panels. To assess the importance of correct haplotype phase on population history inference, we performed fosmid pool sequencing and resolved phased haplotypes of five individuals from diverse African populations (including Yoruba, Esan, Gambia, Massai and Mende). We physically phased 98% of heterozygous SNPs into haplotype-resolved blocks, obtaining a block N50 of 1 Mbp. We combined these data with additional phased genomes from San, Mbuti, Gujarati and CEPH European populations and analyzed population size and separation history using the Pairwise Sequentially Markovian Coalescent (PSMC) and Multiple Sequentially Markovian Coalescent (MSMC) models. We find that statistically phased haplotypes yield an earlier split-time estimation compared with experimentally phased haplotypes. To better interpret patterns of cross-population coalescence, we implemented an approximate Bayesian computation (ABC) approach to estimate population split times and migration rates by fitting the distribution of coalescent times inferred between two haplotypes, one from each population, to a standard Isolation-with-Migration model. We inferred that the separation between hunter-gather populations and other populations happened around 120,000 to 140,000 years ago with gene flow continuing until 30,000 to 40,000 years ago; separation between west African and out of African populations happened around 70,000 to 80,000 years ago, while the separation between Massai and out of African populations happened around 50,000 years ago.

Link

June 21, 2016

Panorama of African admixture

I remember how in the early days of online discussions of anthropology a constant topic of contention was whether African variation was the result of admixture, some of it within Africa, some of it from Caucasoids, or whether it was the result of climatic adaptation manifested in gradual clines (as opposed to clusters corresponding to physical types).

Well, I won't dismiss the role of climate altogether, but it's hard to argue for it much anymore now that we know that the two big fish in the African ocean of human diversity were the spread of Niger-Congo languages (from the west), and of Caucasoids (from the east) over the last few thousands of years, with a healthy seasoning of minor admixtures before and after. Once again it seems that old-style anthropology was right and the more fashionable and trendy attempts to dismiss it as "typology", "imposition of European colonialism through science" and the like were wrong.



eLife 2016;5:e15266

Admixture into and within sub-Saharan Africa

George BJ Busby et al.

Similarity between two individuals in the combination of genetic markers along their chromosomes indicates shared ancestry and can be used to identify historical connections between different population groups due to admixture. We use a genome-wide, haplotype-based, analysis to characterise the structure of genetic diversity and gene-flow in a collection of 48 sub-Saharan African groups. We show that coastal populations experienced an influx of Eurasian haplotypes over the last 7000 years, and that Eastern and Southern Niger-Congo speaking groups share ancestry with Central West Africans as a result of recent population expansions. In fact, most sub-Saharan populations share ancestry with groups from outside of their current geographic region as a result of gene-flow within the last 4000 years. Our in-depth analysis provides insight into haplotype sharing across different ethno-linguistic groups and the recent movement of alleles into new environments, both of which are relevant to studies of genetic epidemiology.

Link

June 08, 2016

700 thousand year old ancestors of H. floresiensis

Nature 534, 245–248 (09 June 2016) doi:10.1038/nature17999

Homo floresiensis-like fossils from the early Middle Pleistocene of Flores

Gerrit D. van den Bergh, Yousuke Kaifu, Iwan Kurniawan, Reiko T. Kono, Adam Brumm, Erick Setiyabudi, Fachroel Aziz & Michael J. Morwood

The evolutionary origin of Homo floresiensis, a diminutive hominin species previously known only by skeletal remains from Liang Bua in western Flores, Indonesia, has been intensively debated. It is a matter of controversy whether this primitive form, dated to the Late Pleistocene, evolved from early Asian Homo erectus and represents a unique and striking case of evolutionary reversal in hominin body and brain size within an insular environment1, 2, 3, 4. The alternative hypothesis is that H. floresiensis derived from an older, smaller-brained member of our genus, such as Homo habilis, or perhaps even late Australopithecus, signalling a hitherto undocumented dispersal of hominins from Africa into eastern Asia by two million years ago (2 Ma)5, 6. Here we describe hominin fossils excavated in 2014 from an early Middle Pleistocene site (Mata Menge) in the So’a Basin of central Flores. These specimens comprise a mandible fragment and six isolated teeth belonging to at least three small-jawed and small-toothed individuals. Dating to ~0.7 Ma, these fossils now constitute the oldest hominin remains from Flores7. The Mata Menge mandible and teeth are similar in dimensions and morphological characteristics to those of H. floresiensis from Liang Bua. The exception is the mandibular first molar, which retains a more primitive condition. Notably, the Mata Menge mandible and molar are even smaller in size than those of the two existing H. floresiensis individuals from Liang Bua. The Mata Menge fossils are derived compared with Australopithecus and H. habilis, and so tend to support the view that H. floresiensis is a dwarfed descendent of early Asian H. erectus. Our findings suggest that hominins on Flores had acquired extremely small body size and other morphological traits specific to H. floresiensis at an unexpectedly early time.

Link

Nature 534, 249–253 (09 June 2016) doi:10.1038/nature17663

Age and context of the oldest known hominin fossils from Flores

Adam Brumm, Gerrit D. van den Bergh, Michael Storey, Iwan Kurniawan, Brent V. Alloway, Ruly Setiawan, Erick Setiyabudi, Rainer Grün, Mark W. Moore, Dida Yurnaldi, Mika R. Puspaningrum, Unggul P. Wibowo, Halmi Insani, Indra Sutisna, John A. Westgate, Nick J. G. Pearce, Mathieu Duval, Hanneke J. M. Meijer, Fachroel Aziz, Thomas Sutikna, Sander van der Kaars, Stephanie Flude & Michael J. Morwood

Recent excavations at the early Middle Pleistocene site of Mata Menge in the So’a Basin of central Flores, Indonesia, have yielded hominin fossils1 attributed to a population ancestral to Late Pleistocene Homo floresiensis2. Here we describe the age and context of the Mata Menge hominin specimens and associated archaeological findings. The fluvial sandstone layer from which the in situ fossils were excavated in 2014 was deposited in a small valley stream around 700 thousand years ago, as indicated by 40Ar/39Ar and fission track dates on stratigraphically bracketing volcanic ash and pyroclastic density current deposits, in combination with coupled uranium-series and electron spin resonance dating of fossil teeth. Palaeoenvironmental data indicate a relatively dry climate in the So’a Basin during the early Middle Pleistocene, while various lines of evidence suggest the hominins inhabited a savannah-like open grassland habitat with a wetland component. The hominin fossils occur alongside the remains of an insular fauna and a simple stone technology that is markedly similar to that associated with Late Pleistocene H. floresiensis.

Link

June 07, 2016

Neolithic Aegean genomes

I had covered this paper when it went on the bioRxiv, but the final version has been published in PNAS in open access.


PNAS doi: 10.1073/pnas.1523951113

Early farmers from across Europe directly descended from Neolithic Aegeans

Zuzana Hofmanová, Susanne Kreutzer et al.

Farming and sedentism first appeared in southwestern Asia during the early Holocene and later spread to neighboring regions, including Europe, along multiple dispersal routes. Conspicuous uncertainties remain about the relative roles of migration, cultural diffusion, and admixture with local foragers in the early Neolithization of Europe. Here we present paleogenomic data for five Neolithic individuals from northern Greece and northwestern Turkey spanning the time and region of the earliest spread of farming into Europe. We use a novel approach to recalibrate raw reads and call genotypes from ancient DNA and observe striking genetic similarity both among Aegean early farmers and with those from across Europe. Our study demonstrates a direct genetic link between Mediterranean and Central European early farmers and those of Greece and Anatolia, extending the European Neolithic migratory chain all the way back to southwestern Asia.

Link

Ancient DNA and human history

A very useful review of the field c. mid-2016. The only major addition would be the study on Upper Paleolithic Europeans that appeared recently.

The lack of East Asian DNA validates my New Year's wish for some. Hopefully my wish will be granted in the second half of 2016.

PNAS doi: 10.1073/pnas.1524306113

Ancient DNA and human history

Montgomery Slatkin, and Fernando Racimo

We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has revealed historical demographic patterns in a way that could not be resolved by analyzing present-day genomes alone. Ancient DNA from archaic hominins has revealed a rich history of admixture between early modern humans, Neanderthals, and Denisovans, and has allowed us to disentangle complex selective processes. Information from aDNA studies is nowhere near saturation, and we believe that future aDNA sequences will continue to change our understanding of hominin history.

Link

Mungo Man DNA revisited + first ancient mtDNA from Australia

The authors find that previously published mtDNA from earliest Australians was contamination, and one S2 mtDNA haplogroup in an undated sample of likely Holocene origin.

PNAS doi: 10.1073/pnas.1521066113

Ancient mtDNA sequences from the First Australians revisited

Tim H. Heupink et al.

The publication in 2001 by Adcock et al. [Adcock GJ, et al. (2001) Proc Natl Acad Sci USA 98(2):537–542] in PNAS reported the recovery of short mtDNA sequences from ancient Australians, including the 42,000-y-old Mungo Man [Willandra Lakes Hominid (WLH3)]. This landmark study in human ancient DNA suggested that an early modern human mitochondrial lineage emerged in Asia and that the theory of modern human origins could no longer be considered solely through the lens of the “Out of Africa” model. To evaluate these claims, we used second generation DNA sequencing and capture methods as well as PCR-based and single-primer extension (SPEX) approaches to reexamine the same four Willandra Lakes and Kow Swamp 8 (KS8) remains studied in the work by Adcock et al. Two of the remains sampled contained no identifiable human DNA (WLH15 and WLH55), whereas the Mungo Man (WLH3) sample contained no Aboriginal Australian DNA. KS8 reveals human mitochondrial sequences that differ from the previously inferred sequence. Instead, we recover a total of five modern European contaminants from Mungo Man (WLH3). We show that the remaining sample (WLH4) contains ∼1.4% human DNA, from which we assembled two complete mitochondrial genomes. One of these was a previously unidentified Aboriginal Australian haplotype belonging to haplogroup S2 that we sequenced to a high coverage. The other was a contaminating modern European mitochondrial haplotype. Although none of the sequences that we recovered matched those reported by Adcock et al., except a contaminant, these findings show the feasibility of obtaining important information from ancient Aboriginal Australian remains.

Link

May 28, 2016

British Celts have more steppe ancestry than British English

An interesting tidbit in a preprint about blood pressure genes:
We consistently obtained significantly positive f4 statistics, implying that both the modern Celtic samples and the ancient Saxon samples have more Steppe ancestry than the modern Anglo-Saxon samples from southern and eastern England. This indicates that southern and eastern England is not exclusively a genetic mix of Celts and Saxons.
Southeastern England is genetically very homogeneous. If the people there were a mix of ancient Celts and Saxons you'd expect them to be intermediate between modern Celts (who should have more Celtic ancestry than the modern English) and ancient Saxons (who should have more Saxon ancestry than the modern English).

But, it seems that the English have less steppe ancestry than both modern Celts and ancient Saxons, so they're not really intermediate. My guess is that the English have Norman ancestry that the Celts don't. While the original Normans were Scandinavians with presumably lots of steppe ancestry, I'd be surprised if the post-1066 Normans that settled England were not already heavily admixed with the "French" and so had less steppe ancestry than the modern British Celts from Wales and Scotland.

bioRxiv http://dx.doi.org/10.1101/055855

Population structure of UK Biobank and ancient Eurasians reveals adaptation at genes influencing blood pressure

Kevin Galinsky et al.

Analyzing genetic differences between closely related populations can be a powerful way to detect recent adaptation. The very large sample size of the UK Biobank is ideal for detecting selection using population differentiation, and enables an analysis of UK population structure at fine resolution. In analyses of 113,851 UK Biobank samples, population structure in the UK is dominated by 5 principal components (PCs) spanning 6 clusters: Northern Ireland, Scotland, northern England, southern England, and two Welsh clusters. Analyses with ancient Eurasians show that populations in the northern UK have higher levels of Steppe ancestry, and that UK population structure cannot be explained as a simple mixture of Celts and Saxons. A scan for unusual population differentiation along top PCs identified a genome-wide significant signal of selection at the coding variant rs601338 in FUT2 (p=9.16×10-9). In addition, by combining evidence of unusual differentiation within the UK with evidence from ancient Eurasians, we identified new genome-wide significant (p less than 5×10-8) signals of recent selection at two additional loci: CYP1A2/CSK and F12. We detected strong associations to diastolic blood pressure in the UK Biobank for the variants with new selection signals at CYP1A2/CSK (p=1.10×10-19)) and for variants with ancient Eurasian selection signals in the ATXN2/SH2B3 locus (p=8.00×10-33), implicating recent adaptation related to blood pressure.

Link

May 27, 2016

The great migration of African Americans

PLoS Genet 12(5): e1006059. doi:10.1371/journal.pgen.1006059

The Great Migration and African-American Genomic Diversity
Soheil Baharian et al.

We present a comprehensive assessment of genomic diversity in the African-American population by studying three genotyped cohorts comprising 3,726 African-Americans from across the United States that provide a representative description of the population across all US states and socioeconomic status. An estimated 82.1% of ancestors to African-Americans lived in Africa prior to the advent of transatlantic travel, 16.7% in Europe, and 1.2% in the Americas, with increased African ancestry in the southern United States compared to the North and West. Combining demographic models of ancestry and those of relatedness suggests that admixture occurred predominantly in the South prior to the Civil War and that ancestry-biased migration is responsible for regional differences in ancestry. We find that recent migrations also caused a strong increase in genetic relatedness among geographically distant African-Americans. Long-range relatedness among African-Americans and between African-Americans and European-Americans thus track north- and west-bound migration routes followed during the Great Migration of the twentieth century. By contrast, short-range relatedness patterns suggest comparable mobility of ∼15–16km per generation for African-Americans and European-Americans, as estimated using a novel analytical model of isolation-by-distance.

Link

May 19, 2016

35,000 year old mtDNA haplogroup U6 from Romania

I wouldn't be very surprised if many of the markers supposedly signifying recent gene flow Africa and Eurasia were actually quite old in Eurasia. The trouble is that reports of such gene flow were often based on simply observing that marker "X" occurs at a higher frequency in Africa than in Eurasia, so a common sense explanation is that it reflects limited recent gene flow between the continents. But, it is now known that common sense is not always the best guide, as e.g., ancient Europeans had mtDNA haplogroup M (in the past considered evidence of Asian admixture), Y-chromosome haplogroup C (ditto), and now U6.

The same should also apply to the Middle East where there has been admixture with Africans since the Islamic period at least. The existence of such admixture does not mean that every single lineage that occurs at low frequency in the Middle East and high frequency in Africa is diagnostic of this later period of admixture. Some of them could well be relics of old Middle Eastern populations. Who knows what people inhabited the presently inhospitable landscape of the Saharan-Arabian desert zone? The living populations can certainly make no claim to being the first ones there, but the genetic heritage of those earlier occupants may still persist in them in traces.

Similarly for the New World; in that case, there is a better case that European-looking lineages are indeed due to the colonization of the Americas over the last five centuries. However, that does not mean that all of them are, and we should be mindful of the possibility of pre-Columbian contact between the Old and New worlds.

Scientific Reports 6, Article number: 25501 (2016)

The mitogenome of a 35,000-year-old Homo sapiens from Europe supports a Palaeolithic back-migration to Africa

M. Hervella et al.

After the dispersal of modern humans (Homo sapiens) Out of Africa, hominins with a similar morphology to that of present-day humans initiated the gradual demographic expansion into Eurasia. The mitogenome (33-fold coverage) of the Peştera Muierii 1 individual (PM1) from Romania (35 ky cal BP) we present in this article corresponds fully to Homo sapiens, whilst exhibiting a mosaic of morphological features related to both modern humans and Neandertals. We have identified the PM1 mitogenome as a basal haplogroup U6*, not previously found in any ancient or present-day humans. The derived U6 haplotypes are predominantly found in present-day North-Western African populations. Concomitantly, those found in Europe have been attributed to recent gene-flow from North Africa. The presence of the basal haplogroup U6* in South East Europe (Romania) at 35 ky BP confirms a Eurasian origin of the U6 mitochondrial lineage. Consequently, we propose that the PM1 lineage is an offshoot to South East Europe that can be traced to the Early Upper Paleolithic back migration from Western Asia to North Africa, during which the U6 lineage diversified, until the emergence of the present-day U6 African lineages.

Link

May 11, 2016

74 loci associated with educational attainment

Other than the claim in the abstract that educational attainment is "mostly environmentally determined" (*), this seems like a very useful study, as it identifies 74 loci associated with educational attainment and explores their interesting biology. 

The utility of this type of study does not consist so much in the ability to predict one's educational potential by looking at one's genotype (we're a long way off from that, and a traditional pencil-and-paper test will probably beat genetics for a long time to come). Rather, it helps move the culture forward, away from the polite ultra-egalitarianism of today's dominant worldview and towards a more scientific attitude concerning the limits of education. Such an attitude will necessarily acknowledge -whether it seems fair to us or not- that genes sometimes dictate that the smart but slothful kid should outperform his diligent but dull-witted peer.

It will certainly be very interesting to see what better methods or even larger sample sizes will bring in years to come.

(*) The heritability of educational attainment has been estimated to be 67-74% of Norwegian males of the 1940-1961 period. There is actually no "universal heritability" of a trait. In a third world country it may very well be that one's educational attainment is determined mostly by environmental effects such as whether you have access to a school within reasonable distance or to just enough food during development. In a modern country (like post-war Norway or a technologically advanced future utopia), environmental effects are expected to be minimal (as everyone will get the best of everything), and variation in educational attainment will simply be due to genes (+noise).

Nature (2016) doi:10.1038/nature17671

Genome-wide association study identifies 74 loci associated with educational attainment 

Aysu Okbay et al.

Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals1. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample1, 2 of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.

Link

May 08, 2016

Natural selection in Britain during the last 2,000 years

The latest ancient DNA studies from the British Isles (Schiffels et al and Martiniano et al. and Cassidy et al.) support continuity over the last 2,000 years. Sure, there were continued migrations like the arrival of the Anglo-Saxons, but these were very similar groups in the grand scheme of things.

But, while ancestrally the modern Briton is probably a descendant of the Britons of 2,000 years ago with some admixture from similar continental European groups, he is not the same, as (apparently) substantial genetic adaptation has continued to operate in Britain over the same period. A new preprint by Field, Boyle, Telis et al. makes the case for adaptation in a variety of traits in the ancestors of Britons over this period. Mind you, the genetic underpinnings of many important human traits known to have high heritability are currently unknown, but there is little doubt that selection would have affected traits beyond those detected in this study. I am quite curious to see whether the striking efflorescence of cultural achievement in Britain over the last half millennium could have (at least in part) a genetic underpinning.

Depigmentation is a trait whose genetic architecture is as well as understood as any. The results of this study might surprise writers of decades and centuries past who supposed that the spectrum of pigmentation of modern Europeans was the result  of admixture-in varying measure- between Xanthochrooi and Melanchrooi races of primordial antiquity. All indications seem to be that depigmentation of hair, skin, and eyes did not co-occur in such a hypothetical race, but rather in different parts of the Caucasoid range, only reaching a high combined frequency in northern Europe to form the distinctive physical type that is distinctive of the natives of that region. It would be quite interesting to see how these traits evolved in Fennoscandia and the Baltic, regions that sport an even higher depigmentation than the British Isles. Traditionally, these areas were viewed as refuges of the Xanthochrooi but it may very well turn out to be that for whatever reason selection has acted in that area as well, as it did in the Eastern European plain where rather dark Bronze Age steppe groups gave way to rather light pigmented living eastern Slavs.

bioRxiv doi: http://dx.doi.org/10.1101/052084

Detection of human adaptation during the past 2,000 years

Yair Field, Evan A Boyle, Natalie Telis, Ziyue Gao, Kyle J Gaulton, David Golan, Loic Yengo, Ghislain Rocheleau, Philippe Froguel, Mark I McCarthy, Jonathan K Pritchard

Detection of recent natural selection is a challenging problem in population genetics, as standard methods generally integrate over long timescales. Here we introduce the Singleton Density Score (SDS), a powerful measure to infer very recent changes in allele frequencies from contemporary genome sequences. When applied to data from the UK10K Project, SDS reflects allele frequency changes in the ancestors of modern Britons during the past 2,000 years. We see strong signals of selection at lactase and HLA, and in favor of blond hair and blue eyes. Turning to signals of polygenic adaptation we find, remarkably, that recent selection for increased height has driven allele frequency shifts across most of the genome. Moreover, we report suggestive new evidence for polygenic shifts affecting many other complex traits. Our results suggest that polygenic adaptation has played a pervasive role in shaping genotypic and phenotypic variation in modern humans.

Link

May 02, 2016

Neandertal ancestry, going, going, ..., gone (?)

A deluge of new data from Upper Paleolithic Europe will give us all a lot to think about. It is incredible that Neandertal ancestry seems to have decreased over time in Europe (Oase1 is off-cline with lots of extra Neandertal ancestry from a recent genealogical Neandertal in the family tree). The functional form of the decrease seems pretty well approximated as linear.

The authors write:
Using one statistic, we estimate a decline from 4.3–5.7% from a time shortly after introgression to 1.1–2.2% in Eurasians today (Fig. 2).
This is remarkable because it shows  that most of the Neandertal ancestry of the earliest AMH in Europe was gone by the Mesolithic. It really seems that Neandertal genes were bred out of the gene pool over time. Will this trend continue into the future? Perhaps only minute traces of Neandertal DNA will remain in humans in 10,000 more years. Some of Neandertal DNA may yet prove to be neutral or beneficial, so at the limit the percentage may be more than zero. Nonetheless, the historical trend does suggest that modern humans inherited mostly genetic garbage from Neandertals and evolution is more than halfway through the process of getting rid of it.

As a corollary, there may have been other episodes of archaic admixture that are no longer detectable. Perhaps our modern human lineage has repeatedly admixed with other species, but traces of those admixtures are long gone by the action of natural selection. The reason for our relative homogeneity as a species may not be that we avoided intermixing with others, but that, sadly, most others had not much that was beneficial to offer to our ancestors.

Nature (2016) doi:10.1038/nature17993

The genetic history of Ice Age Europe

Qiaomei Fu et al.

Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000–7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.

Link

April 30, 2016

More on Kennewick Man

A new technical report re-analyzes the data of Rasmussen et al. study on Kennewick man and confirms that he is related to Native Americans. From the report:
We find the Kennewick sample has the highest shared similarity to Native American populations with the highest values observed being with populations from South America (Figure 7), in line with the observations from Rasmussen et al.
Hopefully this will end the campaign to put him back to the ground. I have added a horizontal line to the new study's Figure 7 to mark the population claiming the skeleton among the huge number considered, showing that there's no particularly strong relationship to it (the strongest connection is at the bottom of the figure).


The Rasmussen et al. and Novembre et al. studies are really science working at its best: simultaneously falsifying claims that Kennewick was some sort of Australoid (or even more implausibly Caucasoid) based on its craniofacial morphology, but not overreaching to validate emotional appeals to make him into an ancestor he wasn't. Thankfully, the way forward is to keep studying Kennewick Man (and modern Native Americans) with ever-better data and techniques which may turn up (who knows?) a real (rather than imagined) ancestral link.


Technical Report: Assessment of the genetic analyses of Rasmussen et al. (2015)

John Novembre, PhD, David Witonsky, Anna Di Rienzo, PhD

The primary aim of the analysis undertaken here (U.S. Army Corps of Engineers, St Louis District Contract #W912P9-16-P-0010) is to provide an independent validation of the genetic evidence underlying a recent publication by Morten Rasmussen and colleagues on July 23rd, 2015, in Nature (Vol 523:455–58). Based on our analysis of the Kennewick Man’s sequence data and Colville tribe genotype data generated by Rasmussen et al., we concur with the findings of the original paper that the sample is genetically closer to modern Native Americans than to any other population worldwide. We carried out several analyses to support this conclusion, including (i) principal component analysis (PCA; Patterson et al. 2006), (ii) unsupervised genetic clustering using ADMIXTURE (Alexander, Novembre, and Lange 2009), (iii) estimation of genetic affinity to modern human populations using f3 and D statistics (Patterson et al. 2012), and (iv) a novel approach based on the geographic distribution of rare variants. Importantly, these distinct analyses, spanning three non-overlapping subsets of the data, are each consistent with Native American ancestry.

Link

April 25, 2016

Bursts in human male demography

From the paper:
When the tree is calibrated with a mutation rate estimate of 0.76 × 10-9 mutations per base pair per year9, the time to the most recent common ancestor (TMRCA) of the tree is ~190,000 years, but we consider the implications of alternative mutation rate estimates below. Of the clades resulting from the four deepest branching events, all but one are exclusive to Africa, and the TMRCA of all non-African lineages (that is, the TMRCA of haplogroups DE and CF) is ~76,000 years (Fig. 1, Supplementary Figs. 18 and 19, Supplementary Table 10, and Supplementary Note). We saw a notable increase in the number of lineages outside Africa ~50–55 kya, perhaps reflecting the geographical expansion and differentiation of Eurasian populations as they settled the vast expanse of these continents. Consistent with previous proposals14, a parsimonious interpretation of the phylogeny is that the predominant African haplogroup, haplogroup E, arose outside the continent. This model of geographical segregation within the CT clade requires just one continental haplogroup exchange (E to Africa), rather than three (D, C, and F out of Africa). Furthermore, the timing of this putative return to Africa—between the emergence of haplogroup E and its differentiation within Africa by 58 kya—is consistent with proposals, based on non–Y chromosome data, of abundant gene flow between Africa and nearby regions of Asia 50–80 kya15.
I've long argued for the Y-chromosome haplogroup E migration into Africa and it is nice to see this common-sense interpretation finally adopted. Too much focus has been placed on figuring out which routes modern humans took out of Africa, and not at all to figure out how Eurasian males came to overwhelm the African Y-chromosome gene pool so decisively. The Eurasian migration into Africa must have taken place in the ~70-60kya window, constrained by the D/E split and  the deepest intra-African E splits. I think that the Out-of-Arabia scenario I outlined in 2012 continues to make a lot of sense. It would be awesome to get data from the first Later Stone Age people from Africa which are probably the best bet to trace this migration from Eurasia into Sub-Saharan Africa.

Nature Genetics (2016) doi:10.1038/ng.3559

Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences

G David Poznik et al.

We report the sequences of 1,244 human Y chromosomes randomly ascertained from 26 worldwide populations by the 1000 Genomes Project. We discovered more than 65,000 variants, including single-nucleotide variants, multiple-nucleotide variants, insertions and deletions, short tandem repeats, and copy number variants. Of these, copy number variants contribute the greatest predicted functional impact. We constructed a calibrated phylogenetic tree on the basis of binary single-nucleotide variants and projected the more complex variants onto it, estimating the number of mutations for each class. Our phylogeny shows bursts of extreme expansion in male numbers that have occurred independently among each of the five continental superpopulations examined, at times of known migrations and technological innovations.

Link