The reduction of mtDNA haplogroup I in modern Scandinavians has been observed before (by the same author). Inferences from the 2 Bell Beaker and 1 Bronze Age samples which belong to U subgroups should be cautious, however these contrast with later groups as well as with the earlier Neolithic Scandinavian TRB samples. Table 5 has haplogroup frequencies in various age-place groups. From the paper:
Table 5 shows the occurrence of haplogroups among ancient Danes and Britons and modern Danes and Scandinavians. Using G-tests, no significant deviations were observed among the extant populations or between the ancient Britons and the ancient Danes, despite the two ancient population samples show a surplus of Hg T and Hg I, respectively. We have previously observed a high frequency of Hg I's among Iron Age villagers (Bøgebjerggård) and individuals from the early Christian cemetery, Kongemarken [16], [17]. This trend was also found for the additional sites reported here, Simonsborg, Galgedil and Riisby. The overall frequency of Hg I among the individuals from the Iron Age to the Medieval Age is 13% (7/53) compared to 2.5% for modern Danes [35]. The higher frequencies of Hg I can not be ascribed to maternal kinship, since only two individuals share the same common motif (K2 and K7 at Kongemarken). Except for Skovgaarde (no Hg I's observed) frequencies range between 9% and 29% and there seems to be no trend in relation to time.There are two main explanations for the reduction in haplogroup I frequency: (a) negative selection and/or (b) the movement of non-I bearing populations into the region of interest. Unless selection occurred very recently (in the last millennium), the lack of a temporal trend adds some weight in favor of (b) and contra (a).
Of interest:
Several haplogroups which are rare or absent among the extant population of southern Scandinavia were observed. Hg's R0a and U7 have been discussed previously [15], [17]. Here we note the finding of Hg N1a in the Medieval Riisby (Table 3), which seems to be common among early European LBK farmers [10], a rare Hg T2 motif in the Iron Age settlement Simonsborg (Table 2) and Hg U5a and Hg U4 at the Early Bronze Age site Bredtoftegård and Neolithic Damsbo (Table 1).
A recent paper on mtDNA haplogroup R0a.
A main conclusion from this paper is that the mtDNA gene pool does not appear to change "monotonically" with time, as the Neolithic Bell Beaker and Bronze Age groups resemble Mesolithic ones rather than the Neolithic TRB. Thus, it is safe to say that simple one-time admixture scenaria between "Paleolithic" and "Neolithic" gene pools grossly oversimplify reality.
The more we learn about prehistory, the less we can believe in the paradigm of static people changing their subsistence, technology, language from the Paleolithic to the present. Migrationism is overdue for a comeback as an explanatory tool for the plethora of unexpected results that the bones of ancient humans present us with.
The persistence of mtDNA-U gene pools down to the Bronze Age leads the authors to consider the Iron Age as the origin of the modern Scandinavian mtDNA gene pool:
However, the frequency of Hg U4 and U5 declines significantly among our more recent Iron Age and Viking Age Danish population samples to the level observed among the extant Danish population. Our study therefore would point to the Early Iron Age and not the Neolithic Funnel Beaker Culture as suggested by Malmström et al. (2009) [14], as the time period when the mtDNA haplogroup frequency pattern, which is characteristic to the presently living population of Southern Scandinavia, emerged and remained by and large unaltered by the subsequent effects of genetic drift.
I find that a reasonable suggestion, as it was in the Iron Age that the Germanic language group seems to have emerged in southern Scandinavia and northern Germany, and started to experience its demographic expansion that rendered it one of the largest in modern Europe. So, it makes sense that the mtDNA composition of that age would persist down to the present-day inhabitants.
- Ancient Viking mtDNA from Denmark
- Iron Age, Viking Age, and Eskimo mtDNA
- Ancient mtDNA from Iron Age Denmark
- mtDNA of an early Danish sample
- Modern Scandinavians descended (maybe) from Neolithic TRB but not Mesolithic Pitted Ware ancestors
- Some mtDNA links between Asia and Europe
Genetic Diversity among Ancient Nordic Populations
Linea Melchior et al.
Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (~2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type “diluted” by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300–3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.
Link