The use of STR variation for dating Y-chromosome lineages or population splits, is a controversial issue, due to the effect that both mutation rates and STR choice has on the temporal scale of age estimates. Following the most recent studies our estimates are based on those STRs that show the highest duration of linearity [49] and by using locus-specific mutation rates (Ballantyne et al. 2010). This is one of the reasons that led us to exclude ‘evolutionary’ mutation rates (see Methods for details). In addition, we removed ‘outlier’ haplotypes (see Methods S1), since their presence could inflate significantly the ages of haplogroups and DAPC clusters. However, these results have to be taken with great caution, keeping in mind that ‘evolutionary’ rates (applied to the same data) would yield time estimates around three times greater. Nonetheless, we observe that two independent methods applied to our data – BATWING and SD-based estimates – yield consistent results. In fact, in contrast to mtDNA age estimates, almost all Y-chromosome estimates fall between late Neolithic and the Bronze Age.On population structure in Italy:
Our results show that the Y-chromosomal genetic diversity of Italy is not clinal but structured in three geographical areas: North-Western Italy (NWI), South-Eastern Italy (SEI) and Sardinia (SAR). The outlier position of SAR described in previous studies [21], [58]–[61] is mainly due to the high frequency of I-M26 haplogroup, that in turn is almost completely absent in continental Italy. In addition, it is noteworthy the scanty haplotype affinities with other European I-M26 lineages as DAPC results seem to indicate (Figure S7, Table S6). However, the structure observed for paternal lineages in continental Italy and Sicily was not characterised by North-South gradients as previously described: our results show a NWI-SEI clustering (Figure 1a), suggesting a shared genetic background between Southern Italy and the Adriatic coast from one side, and between Northern Italy and Tuscany from the other side. Actually, the most accurate description of the discontinuity between NWI and SEI is that of a “belt”, that is a restricted portion of territory in which haplogroup frequencies tend to change more rapidly than in the rest of the Italian peninsula. This model was suggested by the presence of a few populations from North-Eastern and Central Italy (Treviso, Foligno/PG) that reveal an intermediate position between the two main groups.The figure on the left shows the first two principal components based on Y-haplogroup frequencies, with positive/negative values coded as black/white and size of the square indicating the PC value.
On mtDNA:
Age estimates for mtDNA haplogroups - even if past demographic events affecting error rates cannot be excluded - point almost unanimously to pre-Neolithic times, ranging approximately from ~13,000 (H1*) to ~31,600 (HV) YBP. Although such estimates might reflect the haplogroups pre-existent diversity previous to their establishment in Italy (which could be the case of HV, that includes two DAPC clusters with different geographical distributions and whose ages largely post-date that of the whole haplogroup; Table 2), this does not seem to hold for most of the mtDNA haplogroups analysed. Indeed, most of our mtDNA time estimates are consistent with the hypothesis of the existence of a Glacial Refugium in the Italian Peninsula and its probable role in subsequent post-glacial expansions.I am not sure the data can be interpreted as supportive of the refugium hypothesis; they are consistent with it, but might also be consistent with the "pre-existent diversity" during colonization, as the authors themselves mention. I often give the example of Paleolithic TMRCAs for European mtDNA in the Americas, even though the actual arrival of that mtDNA was almost certainly post-1492. In any case, ancient DNA studies will eventually sort out who was where when.
Finally, here's the table of Y-haplogroup frequencies (below) in different regions (defined above):
PLoS ONE 8(5): e65441. doi:10.1371/journal.pone.0065441
Uniparental Markers in Italy Reveal a Sex-Biased Genetic Structure and Different Historical Strata
Alessio Boattini, Begoña Martinez-Cruz et al.
Located in the center of the Mediterranean landscape and with an extensive coastal line, the territory of what is today Italy has played an important role in the history of human settlements and movements of Southern Europe and the Mediterranean Basin. Populated since Paleolithic times, the complexity of human movements during the Neolithic, the Metal Ages and the most recent history of the two last millennia (involving the overlapping of different cultural and demic strata) has shaped the pattern of the modern Italian genetic structure. With the aim of disentangling this pattern and understanding which processes more importantly shaped the distribution of diversity, we have analyzed the uniparentally-inherited markers in ~900 individuals from an extensive sampling across the Italian peninsula, Sardinia and Sicily. Spatial PCAs and DAPCs revealed a sex-biased pattern indicating different demographic histories for males and females. Besides the genetic outlier position of Sardinians, a North West–South East Y-chromosome structure is found in continental Italy. Such structure is in agreement with recent archeological syntheses indicating two independent and parallel processes of Neolithisation. In addition, date estimates pinpoint the importance of the cultural and demographic events during the late Neolithic and Metal Ages. On the other hand, mitochondrial diversity is distributed more homogeneously in agreement with older population events that might be related to the presence of an Italian Refugium during the last glacial period in Europe.
Link