February 12, 2016

Phenotypic effects of Neandertal admixture

Now that we know that Neandertal-introgressed DNA had (deleterious) functional consequences for modern humans, I think we also need a study on "useful stuff" conferred by Neandertal admixture. So far, the Neandertal genome has been used (mostly) as our closest relative, in order to identify novel gene variants shared by all modern humans but absent in Neandertals: the goal is to find things that "made us special". Pickings of this search have been slim.

Doubtlessly, as we begin to better understand the genetics underlying positive human traits, some of these will end up having come from archaic humans. Neandertal admixture was a huge injection of "new stuff" into the Eurasian modern human gene pool, and there is every reason to think that even if the "bad stuff" outweighed the "good", there was still plenty of room for functionally beneficial variants to be acquired from them.

Science 12 Feb 2016:
Vol. 351, Issue 6274, pp. 737-741

The phenotypic legacy of admixture between modern humans and Neandertals

Corinne N. Simonti et al.

Many modern human genomes retain DNA inherited from interbreeding with archaic hominins, such as Neandertals, yet the influence of this admixture on human traits is largely unknown. We analyzed the contribution of common Neandertal variants to over 1000 electronic health record (EHR)–derived phenotypes in ~28,000 adults of European ancestry. We discovered and replicated associations of Neandertal alleles with neurological, psychiatric, immunological, and dermatological phenotypes. Neandertal alleles together explained a significant fraction of the variation in risk for depression and skin lesions resulting from sun exposure (actinic keratosis), and individual Neandertal alleles were significantly associated with specific human phenotypes, including hypercoagulation and tobacco use. Our results establish that archaic admixture influences disease risk in modern humans, provide hypotheses about the effects of hundreds of Neandertal haplotypes, and demonstrate the utility of EHR data in evolutionary analyses.

Link

February 08, 2016

mtDNA from 55 hunter-gatherers across 35,000 years in Europe

The fact that UP Europeans had mtDNA haplogroup M really destroys any lingering justification for a coastal migration that first brought (M, N) to Asia and then a subset (N) into Europe.

Another justification for the "Asia-first" model was the presence of Y-haplogroup C in Australians and Asians. But, that too was found in UP Europeans (K14).

So, I think things are looking good for my theory that Eurasians came out of Arabia northwards, interbred with Neandertals, headed both west and east, populating both Europe and Asia. The inferred date for both M and N (55kya) is on the cusp of the 50kya technological transition.

The authors also propose a major turnover in Europe at 14.5kya that replaced (not necessarily completely) the previous occupants. The authors write:
In European hunter-gatherers, our model best explains this period of upheaval as a replacement of the post-LGM maternal population by one from another source. Although the exact origin for this later population is unknown, the inferred demographic history (Figure 3 and 2b in Figure S2) suggests that it descended from another, separate LGM refugium.
Where was this LGM refugium?
Exactly where this new population came from is still unclear, but it seems likely that they came from warmer areas further south. “The main hypothesis would be glacial refugia in south-eastern Europe,” says Johannes Krause at the Max Planck Institute for the Science of Human History in Jena, Germany, who led the analysis.

Current Biology DOI: http://dx.doi.org/10.1016/j.cub.2016.01.037

Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe

Cosimo Posth et al.

How modern humans dispersed into Eurasia and Australasia, including the number of separate expansions and their timings, is highly debated [ 1, 2 ]. Two categories of models are proposed for the dispersal of non-Africans: (1) single dispersal, i.e., a single major diffusion of modern humans across Eurasia and Australasia [ 3–5 ]; and (2) multiple dispersal, i.e., additional earlier population expansions that may have contributed to the genetic diversity of some present-day humans outside of Africa [ 6–9 ]. Many variants of these models focus largely on Asia and Australasia, neglecting human dispersal into Europe, thus explaining only a subset of the entire colonization process outside of Africa [ 3–5, 8, 9 ]. The genetic diversity of the first modern humans who spread into Europe during the Late Pleistocene and the impact of subsequent climatic events on their demography are largely unknown. Here we analyze 55 complete human mitochondrial genomes (mtDNAs) of hunter-gatherers spanning ∼35,000 years of European prehistory. We unexpectedly find mtDNA lineage M in individuals prior to the Last Glacial Maximum (LGM). This lineage is absent in contemporary Europeans, although it is found at high frequency in modern Asians, Australasians, and Native Americans. Dating the most recent common ancestor of each of the modern non-African mtDNA clades reveals their single, late, and rapid dispersal less than 55,000 years ago. Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene.

Link

February 02, 2016

Admixture within and into Africa

bioRxiv, http://dx.doi.org/10.1101/038406

Admixture into and within sub-Saharan Africa

George Busby, Gavin Band, Quang Si Le, Muminatou Jallow, Edith Bougama, Valentina Mangano, Lucas Amenga-Etego, Anthony Emil, Tobias Apinjoh, Carolyne Ndila, Alphaxard Manjurano, Vysaul Nyirongo, Ogobara Doumbo, Kirk Rockett, Domnic Kwiatkowski, Chris Spencer, The Malaria Genomic Epidemiology Network

Understanding patterns of genetic diversity is a crucial component of medical research in Africa. Here we use haplotype-based population genetics inference to describe gene-flow and admixture in a collection of 48 African groups with a focus on the major populations of the sub-Sahara. Our analysis presents a framework for interpreting haplotype diversity within and between population groups and provides a demographic foundation for genetic epidemiology in Africa. We show that coastal African populations have experienced an influx of Eurasian haplotypes as a series of admixture events over the last 7,000 years, and that Niger-Congo speaking groups from East and Southern Africa share ancestry with Central West Africans as a result of recent population expansions associated with the adoption of new agricultural technologies. We demonstrate that most sub-Saharan populations share ancestry with groups from outside of their current geographic region as a result of large-scale population movements over the last 4,000 years. Our in-depth analysis of admixture provides an insight into haplotype sharing across different geographic groups and the recent movement of alleles into new climatic and pathogenic environments, both of which will aid the interpretation of genetic studies of disease in sub-Saharan Africa.

Link

January 26, 2016

History of extant populations of India

The five components they speak of are ANI, ASI, AAA (Ancestral Austro-Asiatic), ATB (Ancestral Tibeto-Burman), and a distinct fifth ancestry in the Andaman archipelago.

The differentiation of the four main components seems clear enough on the figure (left). The big question is how and in what order the different components got into India. I would wager that ASI was first and I modify my New Year's wish to ask for some ancient DNA from India too.

An interesting bit from the paper:
...that the practice of endogamy was established almost simultaneously, possibly by decree of the rulers, in upper-caste populations of all geographical regions, about 70 generations before present, probably during the reign (319–550 CE) of the ardent Hindu Gupta rulers
How plausible is that to anyone familiar with Indian history?

PNAS doi: 10.1073/pnas.1513197113

Genomic reconstruction of the history of extant populations of India reveals five distinct ancestral components and a complex structure

Analabha Basu, Neeta Sarkar-Roya, and Partha P. Majumder

India, occupying the center stage of Paleolithic and Neolithic migrations, has been underrepresented in genome-wide studies of variation. Systematic analysis of genome-wide data, using multiple robust statistical methods, on (i) 367 unrelated individuals drawn from 18 mainland and 2 island (Andaman and Nicobar Islands) populations selected to represent geographic, linguistic, and ethnic diversities, and (ii) individuals from populations represented in the Human Genome Diversity Panel (HGDP), reveal four major ancestries in mainland India. This contrasts with an earlier inference of two ancestries based on limited population sampling. A distinct ancestry of the populations of Andaman archipelago was identified and found to be coancestral to Oceanic populations. Analysis of ancestral haplotype blocks revealed that extant mainland populations (i) admixed widely irrespective of ancestry, although admixtures between populations was not always symmetric, and (ii) this practice was rapidly replaced by endogamy about 70 generations ago, among upper castes and Indo-European speakers predominantly. This estimated time coincides with the historical period of formulation and adoption of sociocultural norms restricting intermarriage in large social strata. A similar replacement observed among tribal populations was temporally less uniform.

Link

January 16, 2016

Humans in the central Siberian Arctic ~45,000 years ago

The lack of such northerly sites prior to 45,000 years ago makes it quite likely that this mammoth kill was made by modern humans (it would be quite a coincidence if it was made by Neandertals at the same time as the expansionary Homo sapiens make their appearance all over the rest of Eurasia). If this is right, it's quite remarkable that by the mid to late 40,000s, modern humans were at ease from the equator to the arctic and from Europe to the remotest parts of Asia.

Science 15 Jan 2016:
Vol. 351, Issue 6270, pp. 260-263

Early human presence in the Arctic: Evidence from 45,000-year-old mammoth remains

Vladimir V. Pitulko, Alexei N. Tikhonov et al.

Archaeological evidence for human dispersal through northern Eurasia before 40,000 years ago is rare. In west Siberia, the northernmost find of that age is located at 57°N. Elsewhere, the earliest presence of humans in the Arctic is commonly thought to be circa 35,000 to 30,000 years before the present. A mammoth kill site in the central Siberian Arctic, dated to 45,000 years before the present, expands the populated area to almost 72°N. The advancement of mammoth hunting probably allowed people to survive and spread widely across northernmost Arctic Siberia.

Link

January 08, 2016

Helicobacter pylori in the Iceman

Science 8 January 2016:
Vol. 351 no. 6269 pp. 162-165

The 5300-year-old Helicobacter pylori genome of the Iceman
Frank Maixner1,*,†, Ben Krause-Kyora2,†, Dmitrij Turaev3,†, Alexander Herbig4,5, et al.

The stomach bacterium Helicobacter pylori is one of the most prevalent human pathogens. It has dispersed globally with its human host, resulting in a distinct phylogeographic pattern that can be used to reconstruct both recent and ancient human migrations. The extant European population of H. pylori is known to be a hybrid between Asian and African bacteria, but there exist different hypotheses about when and where the hybridization took place, reflecting the complex demographic history of Europeans. Here, we present a 5300-year-old H. pylori genome from a European Copper Age glacier mummy. The “Iceman” H. pylori is a nearly pure representative of the bacterial population of Asian origin that existed in Europe before hybridization, suggesting that the African population arrived in Europe within the past few thousand years.

Link

January 06, 2016

Even more Anatolian Neolithic genomes

Recently I proclaimed the problem of "Neolithization of Europe" to be "done", but it doesn't hurt to have more confirmation as this new paper does. The Anatolian data is from a different site than those used by Mathieson et al. and Hofmanová, Kreutzer et al. albeit still in the extreme northwest of Asia Minor. Nonetheless, the individual from Kumtepe doesn't seem to carry any major surprises, so "Neolithization of Europe" remains "done".

Current Biology http://dx.doi.org/10.1016/j.cub.2015.12.019

Genomic Evidence Establishes Anatolia as the Source of the European Neolithic Gene Pool 

Ayça Omrak et al.

Anatolia and the Near East have long been recognized as the epicenter of the Neolithic expansion through archaeological evidence. Recent archaeogenetic studies on Neolithic European human remains have shown that the Neolithic expansion in Europe was driven westward and northward by migration from a supposed Near Eastern origin [ 1–5 ]. However, this expansion and the establishment of numerous culture complexes in the Aegean and Balkans did not occur until 8,500 before present (BP), over 2,000 years after the initial settlements in the Neolithic core area [ 6–9 ]. We present ancient genome-wide sequence data from 6,700-year-old human remains excavated from a Neolithic context in Kumtepe, located in northwestern Anatolia near the well-known (and younger) site Troy [ 10 ]. Kumtepe is one of the settlements that emerged around 7,000 BP, after the initial expansion wave brought Neolithic practices to Europe. We show that this individual displays genetic similarities to the early European Neolithic gene pool and modern-day Sardinians, as well as a genetic affinity to modern-day populations from the Near East and the Caucasus. Furthermore, modern-day Anatolians carry signatures of several admixture events from different populations that have diluted this early Neolithic farmer component, explaining why modern-day Sardinian populations, instead of modern-day Anatolian populations, are genetically more similar to the people that drove the Neolithic expansion into Europe. Anatolia’s central geographic location appears to have served as a connecting point, allowing a complex contact network with other areas of the Near East and Europe throughout, and after, the Neolithic.

Link

January 01, 2016

Happy New Year 2016

Last year I wished for ancient African DNA and I got my wish.
This year I wish for some ancient East Asian DNA. It's quite an embarrassment that hundreds of ancient European genomes have been published, but only a single Chromosome 21 from East Asia.


December 29, 2015

Bronze Age people from Ireland had steppe ancestry and R1b

From the paper:
We were able to deduce that Neolithic Ballynahatty had a dark hair shade (99.5% probability), most likely black (86.1% probability), and brown eyes (97.3% probability) (46). Bronze Age Rathlin1 probably had a light hair shade (61.4%) and brown eyes (64.3%). However, each Rathlin genome possessed indication of at least one copy of a haplotype associated with blue eye color in the HERC2/OCA2 region.
and:
Third, we followed the methods described in Haak et al. (9), which use a collection of outgroup populations, to estimate the mixture proportions of three different sources, Linearbandkeramik (Early Neolithic; 35 ± 6%), Loschbour (WHG; 26 ± 12%), and Yamnaya (39 ± 8%), in the total Irish Bronze Age group. These three approaches give an overlapping estimate of ∼32% Yamnaya ancestry.
PNAS doi: 10.1073/pnas.1518445113

Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome

Lara M. Cassidy, Rui Martiniano et al.

The Neolithic and Bronze Age transitions were profound cultural shifts catalyzed in parts of Europe by migrations, first of early farmers from the Near East and then Bronze Age herders from the Pontic Steppe. However, a decades-long, unresolved controversy is whether population change or cultural adoption occurred at the Atlantic edge, within the British Isles. We address this issue by using the first whole genome data from prehistoric Irish individuals. A Neolithic woman (3343–3020 cal BC) from a megalithic burial (10.3× coverage) possessed a genome of predominantly Near Eastern origin. She had some hunter–gatherer ancestry but belonged to a population of large effective size, suggesting a substantial influx of early farmers to the island. Three Bronze Age individuals from Rathlin Island (2026–1534 cal BC), including one high coverage (10.5×) genome, showed substantial Steppe genetic heritage indicating that the European population upheavals of the third millennium manifested all of the way from southern Siberia to the western ocean. This turnover invites the possibility of accompanying introduction of Indo-European, perhaps early Celtic, language. Irish Bronze Age haplotypic similarity is strongest within modern Irish, Scottish, and Welsh populations, and several important genetic variants that today show maximal or very high frequencies in Ireland appear at this horizon. These include those coding for lactase persistence, blue eye color, Y chromosome R1b haplotypes, and the hemochromatosis C282Y allele; to our knowledge, the first detection of a known Mendelian disease variant in prehistory. These findings together suggest the establishment of central attributes of the Irish genome 4,000 y ago.

Link

December 22, 2015

Refining Y-chromosome phylogeny with South African sequences

bioRxiv http://dx.doi.org/10.1101/034983

Refining the Y chromosome phylogeny with southern African sequences

Chiara Barbieri, Alexander Hübner, Enrico Macholdt, Shengyu Ni, Sebastian Lippold, Roland Schröder, Sununguko Wata Mpoloka, Josephine Purps, Lutz Roewer, Mark Stoneking, Brigitte Pakendorf

The recent availability of large-scale sequence data for the human Y chromosome has revolutionized analyses of and insights gained from this non-recombining, paternally inherited chromosome. However, the studies to date focus on Eurasian variation, and hence the diversity of early-diverging branches found in Africa has not been adequately documented. Here we analyze over 900 kb of Y chromosome sequence obtained from 547 individuals from southern African Khoisan and Bantu-speaking populations, identifying 232 new sequences from basal haplogroups A and B. We find new branches within haplogroups A2 and A3b1 and suggest that the prehistory of haplogroup B2a is more complex than previously suspected; this haplogroup is likely to have existed in Khoisan groups before the arrival of Bantu-speakers, who brought additional B2a lineages to southern Africa. Furthermore, we estimate older dates than obtained previously for both the A2-T node within the human Y chromosome phylogeny and for some individual haplogroups. Finally, there is pronounced variation in branch length between major haplogroups; haplogroups associated with Bantu-speakers have significantly longer branches. This likely reflects a combination of biases in the SNP calling process and demographic factors, such as an older average paternal age (hence a higher mutation rate), a higher effective population size, and/or a stronger effect of population expansion for Bantu-speakers than for Khoisan groups.

Link

December 18, 2015

Archaic femur from Maludong, China

PLoS ONE 10(12): e0143332. doi:10.1371/journal.pone.0143332

A Hominin Femur with Archaic Affinities from the Late Pleistocene of Southwest China

Darren Curnoe et al.

The number of Late Pleistocene hominin species and the timing of their extinction are issues receiving renewed attention following genomic evidence for interbreeding between the ancestors of some living humans and archaic taxa. Yet, major gaps in the fossil record and uncertainties surrounding the age of key fossils have meant that these questions remain poorly understood. Here we describe and compare a highly unusual femur from Late Pleistocene sediments at Maludong (Yunnan), Southwest China, recovered along with cranial remains that exhibit a mixture of anatomically modern human and archaic traits. Our studies show that the Maludong femur has affinities to archaic hominins, especially Lower Pleistocene femora. However, the scarcity of later Middle and Late Pleistocene archaic remains in East Asia makes an assessment of systematically relevant character states difficult, warranting caution in assigning the specimen to a species at this time. The Maludong fossil probably samples an archaic population that survived until around 14,000 years ago in the biogeographically complex region of Southwest China.

Link

November 26, 2015

Neolithic farmers from Greece and Anatolia

A couple of new papers appeared this week. First, an article in Nature on natural selection in ancient Europe includes a sample of Anatolian Neolithic farmers and concludes that the European Neolithic farmers were descended from them with a bit of extra European hunter-gatherer admixture. Second, a new preprint on the bioRxiv includes Neolithic samples from northern Greece and finds that they too resemble the Anatolian and European farmers. I think it is time to declare the problem of "Neolithization of Europe" done. It took less than 4 years to solve it with ancient DNA. Here is a (non-exhaustive) list of papers in historical review:



Nature (2015) doi:10.1038/nature16152

Genome-wide patterns of selection in 230 ancient Eurasians

Iain Mathieson et al.

Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 BC, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe’s first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 BC, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

Link

bioRxiv http://dx.doi.org/10.1101/032763

Early farmers from across Europe directly descended from Neolithic Aegeans

Zuzana Hofmanová, Susanne Kreutzer et al.

Farming and sedentism first appear in southwest Asia during the early Holocene and later spread to neighboring regions, including Europe, along multiple dispersal routes. Conspicuous uncertainties remain about the relative roles of migration, cultural diffusion and admixture with local foragers in the early Neolithisation of Europe. Here we present paleogenomic data for five Neolithic individuals from northwestern Turkey and northern Greece, spanning the time and region of the earliest spread of farming into Europe. We observe striking genetic similarity both among Aegean early farmers and with those from across Europe. Our study demonstrates a direct genetic link between Mediterranean and Central European early farmers and those of Greece and Anatolia, extending the European Neolithic migratory chain all the way back to southwestern Asia.

Link

November 18, 2015

Two more Denisovans (Sawyer, Renaud et al. 2015)

PNAS doi: 10.1073/pnas.1519905112

Nuclear and mitochondrial DNA sequences from two Denisovan individuals

Susanna Sawyer, Gabriel Renaud et al.

Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans.

Link

November 16, 2015

West_Asian in the flesh (hunter-gatherers from Georgia) (Jones et al. 2015)

Years ago, I detected the presence of a West_Asian genetic component (with dual modes in "Caucasus" and "Gedrosia") whose origins I placed in the "highlands of West Asia" and which I proposed spread into Europe post-5kya with Indo-European languages.

Earlier this year, the study by Haak et al. showed that steppe invaders after 5kya brought into Europe a 50/50 mix of "Eastern European Hunter-Gatherer" (EHG) ancestry/An unknown population from the Near East/Caucasus. The "unknown population" was most similar to Caucasians/Near Easterners like Armenians but did not correspond to any ancient sample.

A new paper in Nature Communications by Jones et al. finds this "missing link" in the flesh in Upper Paleolithic/Mesolithic hunter-gatherers from Georgia which they call "Caucasus Hunter-Gatherers" (CHG). From the paper:
The separation between CHG and both EF and WHG ended during the Early Bronze Age when a major ancestral component linked to CHG was carried west by migrating herders from the Eurasian Steppe. The foundation group for this seismic change was the Yamnaya, who we estimate to owe half of their ancestry to CHG-linked sources.
The authors also make the connection to South Asia:
In modern populations, the impact of CHG also stretches beyond Europe to the east. Central and South Asian populations received genetic influx from CHG (or a population close to them), as shown by a prominent CHG component in ADMIXTURE (Supplementary Fig. 5; Supplementary Note 9) and admixture f3-statistics, which show many samples as a mix of CHG and another South Asian population (Fig. 4b; Supplementary Table 9).
Also of interest:
Both Georgian hunter-gatherer samples were assigned to haplogroup J with Kotias belonging to the subhaplogroup J2a (see methods).
The paper is open access, so go ahead and read it for other details.

Nature Communications 6, Article number: 8912 doi:10.1038/ncomms9912

Upper Palaeolithic genomes reveal deep roots of modern Eurasians

Eppie R. Jones et al.

We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic–Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers ~45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers ~25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe ~3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages.

Link

November 11, 2015

Genetic structure of 1,272 Italians

From the paper:
The distribution of the pairwise Fst distances between all population pairs is shown in Supplementary Table S3. The genetic distance between Southern and Northern Italians (Fst=0.0013) is comparable to that between individuals living in different political units (ie, Iberians-Romanians Fst=0.0011; British-French Fst=0.0007), and, interestingly, in >50% of all the possible pairwise comparisons within Europe (Supplementary Figure S7).
European Journal of Human Genetics advance online publication 11 November 2015; doi: 10.1038/ejhg.2015.233

The Italian genome reflects the history of Europe and the Mediterranean basin

Giovanni Fiorito et al.

Recent scientific literature has highlighted the relevance of population genetic studies both for disease association mapping in admixed populations and for understanding the history of human migrations. Deeper insight into the history of the Italian population is critical for understanding the peopling of Europe. Because of its crucial position at the centre of the Mediterranean basin, the Italian peninsula has experienced a complex history of colonization and migration whose genetic signatures are still present in contemporary Italians. In this study, we investigated genomic variation in the Italian population using 2.5 million single-nucleotide polymorphisms in a sample of more than 300 unrelated Italian subjects with well-defined geographical origins. We combined several analytical approaches to interpret genome-wide data on 1272 individuals from European, Middle Eastern, and North African populations. We detected three major ancestral components contributing different proportions across the Italian peninsula, and signatures of continuous gene flow within Italy, which have produced remarkable genetic variability among contemporary Italians. In addition, we have extracted novel details about the Italian population’s ancestry, identifying the genetic signatures of major historical events in Europe and the Mediterranean basin from the Neolithic (e.g., peopling of Sardinia) to recent times (e.g., ‘barbarian invasion’ of Northern and Central Italy). These results are valuable for further genetic, epidemiological and forensic studies in Italy and in Europe.

Link