Showing posts with label Xiongnu. Show all posts
Showing posts with label Xiongnu. Show all posts

January 30, 2012

AAPA 2012 abstracts (part 1)

Here are some interesting abstracts from the 81st Annual Meeting of the American Association of Physical Anthropologists.


Maternal marks of admixture in Cape Coloreds of South Africa.
KRISTINE G. BEATY1, DELISA L. PHILLIPS1, MACIEJ HENNEBERG2 and MICHAEL H. CRAWFORD1.
Previous studies of genetic diversity have suggested that the Cape Coloureds of South Africa are a highly admixed population with genetic roots from indigenous African groups including Khoisans, and the later arrival of Bantu speaking Xhosa farmers. Further genetic contributions came during European colonization of South Africa, which added to the inclusion of largely male European markers to the gene pool. Slaves from Indonesia, Malaysia, Madagascar and India are also thought to have contributed to the genetic makeup of this ethnic group. This study examines the maternal contribution of each of these groups to the genetic diversity of the Cape Coloreds through sequencing of the hypervariable region I of the mitochondrial DNA and through restriction fragment length polymorphism.
A total of 123 individuals were examined for this study. High frequencies of haplogroups L1 and L2 were found at 81.3 percent in this group (100 of the 123 individuals), which indicates that this group has a large African contribution to its mitochondrial makeup. Restrictions of the major European haplogroups identified nine individuals, 7.3 percent of the sample, belonged to haplogroups I and J. Five individuals (4.1 percent of the sample) belonged to the superhaplogroup M, indicating that Asian slaves did contribute to the maternal gene pool. The majority of maternal lineages in this Cape Coloured sample are African in origin, with some European influence and a small contribution from Asian maternal lineages.

Ancient DNA reveals the population origin of the Eastern Xinjiang.
SHIZHU GAO2, HONGJIE LI1, CHUNXIANG LI1 and HUI ZHOU1,3.
Connecting with the Turpan Basin, the Eurasia steppe and the Gansu Corridor, the Eastern region of Xinjiang has played a significant role in the history of human migration, cultural developments, and communications between the East and the West. The population origin, migration and integration of this region have attracted extensive interest among scientists.
In order to research the population origin and movement of the Eastern Xinjiang, genetic polymorphisms studies of the Hami population were conducted. The Hami site is located in the East of Tian-Moutain in Xinjiang, dating back to the Bronze-early Iron Age. Archaeological studies showed that the culture of the Hami site possessed features from both the East and the West. Ancient mtDNA analysis showed that A, C, D, F, G, Z and M7 of the Eastern maternal lines, and W, U2e, U4, and U5aof the Western maternal lines were identified. Tajimas’D test and mismatch distribution analysis show that the Hami population had experienced population expansion in recent time. The demographic analysis of haplogroups suggests that the populations of the Northwest China, Siberia and the Central Asia have contributed to the mtDNA gene pool of the Hami population.
Our study reveals the genetic structure of the early population in Eastern Xinjiang, and its relationships with other Eurasian populations. The results will provide valuable genetic information to further explore the population origin and migration of Xinjiang and Central Asia.


Analysis of Chuvash mtDNA points to Finno-Ugric origin.
ORION M. GRAF1, STEPHEN M. JOHNSON1, JOHN MITCHELL2, STEPHEN WILCOX3, GREGORY LIVSHITS4 and MICHAEL H. CRAWFORD1.
A sample of 92 unrelated individuals from Chuvashia, Russia was sequenced for hypervariable region-I (HVR-I) of the mtDNA molecule. These data have been verified using RFLP analysis of the control region, revealing that the majority exhibit haplogroups H (31%), U (22%), and K (11%), which occur in high frequencies in western and northern Europe, but are virtually absent in Altaic or Mongolian populations. Multidimensional scaling (MDS) was used to examine distances between the Chuvash and reference populations from the literature. Neutrality tests (Tajima’s D (-1.43365) p<0.05, Fu’s FS (-25.50518) p<0.001) and mismatch analysis, which illustrates unimodal distribution, all suggest an expanding population.
The Chuvash speak a Turkic language that is not mutually intelligible to other extant Turkish groups, and their genetics are distinct from Turkic-speaking Altaic groups. Some scholars have suggested that they are remnants of the Golden Horde, while others have advocated that they are the products of admixture between Turkic and Finno-Ugric speakers who came into contact during the 13th century. Earlier genetic research using autosomal DNA markers indicated a Finno-Ugric origin for the Chuvash. This study examines uniparental mitochondrial DNA markers to better elucidate their origins. Results from this study maintain that the Chuvash are not related to Altaic or Mongolian populations along their maternal line, thus supporting the “Elite” hypothesis that their language was imposed by a conquering group —leaving Chuvash mtDNA largely of Eurasian origin. Their maternal markers appear to most closely resemble Finno-Ugric speakers rather than Turkic speakers.


An ancient DNA perspective on the Iron Age “princely burials” from Baden-Wurttemberg, Germany.
ESTHER J. LEE1, CHRISTOPH STEFFEN1, MELANIE HARDER1, BEN KRAUSE-KYORA1, NICOLE VON WURMB-SCHWARK2 and ALMUT NEBEL3.
During the Iron Age in Europe, fundamental social principles such as age, gender, status, and kinship were thought to have played an important role in the social structure of Late Hallstatt and Early Latene societies. In order to address the question of kinship relations represented in the Iron Age “princely burials” that are characterized by their rich material culture, we carried out genetic analysis of individuals associated with the Late Hallstatt culture from Baden-Wurttemberg, Germany. Bone specimens of thirty-eight skeletal remains were collected from five sites including Asperg Grafenbuhl, Muhlacker Heidenwaldle, Hirschlanden, Ludwigsburg, and Schodeingen. Specimens were subjected to DNA extraction and amplification under strict criteria for ancient DNA analysis. We successfully obtained mitochondrial DNA (mtDNA) control region sequences from seventeen individuals that showed different haplotypes, which were assigned to nine haplogroups including haplogroups H, I, K, U5, U7, W, and X2b. Despite the lack of information from nuclear DNA to infer familial relations, information from the mtDNA suggests an intriguing genetic composition of the Late Hallstatt burials. In particular, twelve distinct haplotypes from Asperg Grafenbuhl suggest a heterogeneous composition of maternal lineages represented in the “princely burials”. The results from this study provide clues to the social structure reflected in the burial patterns of the Late Hallstatt culture and implications on the genetic landscape during the Iron Age in Europe.


Genetic snapshot from ancient nomads of Xinjiang.
HONGJIE LI1, SHIZHU GAO2, CHUNXIANG LI1, YE ZHANG1, WEN ZENG3, DONG WEI3 and HUI ZHOU1,3.
Nomads of the Eurasian steppes are known to have played an important role in the transfer commodities and culture among East Asia, Central Asia, and Europe. However, the organization of nomadic societies and initial population genetic composition of nomads were still poorly understood because of few archaeological materials and written history.
In this study, the genetic snapshot of nomads was emerged by examining mitochondrial DNA and Y-chromosome DNA of 30 human remains from Heigouliang (HGL) site in the eastern of Xinjiang, which dated 2000 years ago and associated to the nomadic culture by archaeological studies. Mitochondrial DNA analysis showed that the HGL population included both East Eurasian haplogroups (A, C, D, G, F and Z) and West Eurasian haplogroups (H, K, J, M5 and H). The component of Eastern haplogroups is dominant. The distribution frequency and Fst values of Eastern haplogroups indicated the HGL population presented close genetic affinity to the nearby region modern populations of Gansu and Qinghai, while those of western haplogroups showed similar with Mongolia and Siberia populations. The results implied various maternal lineages were introduced into the HGL population. Regarding the Y chromosomal DNA analysis, nearly all samples belonged to haplogroup Q which is thought to be the mark of the Northern Asian nomads. We identified paternal kinship among three individuals at the same tomb by Y-STR marker.
Combined with archaeological and anthropological investigations, we inferred that the gene flow from the neighboring regions was possibly associated with the expansion of Xiongnu Empire.


Vikings, merchants and pirates at the top of the world: Y-chromosomal signatures of recent and ancient migrations in the Faroe Islands.
ALLISON E. MANN1, EYDFINN MAGNUSSEN2 and CHRISTOPHER R. TILLQUIST1.
The Faroe Islands are a small archipelago in the North Atlantic Ocean. With a current population of approximately 48,000 individuals and evidence of high levels of genetic drift, the Faroese are thought to have remained highly homogeneous since the islands were settled by Vikings around 900CE. Despite their geographic isolation, however, there is historical evidence that the Faroese experienced sporadic contact with other populations since the time of founding. Contact with Barbary pirates in the seventeenth century is documented in the Faroes; there is also the possibility of modern migrations to work in the highly productive fishery. This study set out to distinguish the signal of the original founders from later migrants. Eleven Y-chromosomal STR markers were scored for 139 Faroese males from three geographically dispersed islands. Haplotypes were analyzed using Athey's method to infer haplogroup. Median-joining networks within haplogroups were constructed to determine the phylogenetic relationships within the Faroese and between likely parental populations—Danish, Irish, and Norwegians. Dispersal patterns of individuals around Faroese haplogroups suggest different times of haplotype introduction to the islands. The most common haplogroup, R1a, consists of a large node with a tight network of neighbor haplotypes, such that 68% of individuals are one or two mutational steps away. This pattern may represent the early founder event of R1a in the Faroes. Other distributions, especially of non-Scandinavian haplotypes, document more recent introductions to the islands. The overall pattern is one of a strong founder effect followed by minor instances of later migrations.



Date estimates for major mitochondrial haplogroups in Yemen.
DEVEN N. VYAS1, VIKTOR ČERNÝ2, ALI AL-MEERI3 and CONNIE J. MULLIGAN1.
Yemen occupies a key location as the first stop for anatomically modern humans on a theoretical southern migration route out of Africa. If modern humans did pass through Yemen during the first migrations out of Africa and if they left modern-day descendants, we would expect to see deep divergences in the Yemeni mitochondrial gene tree. Alternatively, if modern humans passed through Yemen but did not leave modern-day descendants or if Yemen was not on the path of these ancient migrations, we would expect more recent dates to be associated with Yemeni mitochondrial haplogroups.
Using 44 previously sequenced mitochondrial genomes as well as 24 newly sequenced mitochondrial genomes from samples collected throughout Yemen, several methods were used to estimate divergence dates of major Yemeni haplogroups including L2, M, R0a and HV. Specifically, phylogenetic trees were generated using MrBayes and maximum likelihood methods. Bayesian and ρ statistic based methods were used to estimate dates of Yemeni haplogroups and these dates were compared with each other, previously published dates for these haplogroups, approximate dates of climatic change that might be expected to correlate with population expansions, and estimates based on archaeological and paleontological evidence for the first migrations out of Africa. These comparisons are intended to cover the range of possible haplogroup divergence dates with respect to the history of early modern humans in southern Arabia.


May 29, 2010

Comparison between morphological and genetic data for Egyin Gol Mongolians

I had first blogged about Egyin Gol in 2003, that paper is freely available here. From the current paper:
The Egyin Gol necropolis is located in the Egyin Gol Valley (northern Mongolia), near the Egyin Gol River, close to its confluence with the Selenge, a main tributary of Lake Baikal (see Fig. 1). This site has been the subject of a French-Mongolian interdisciplinary research project from 1997 to 1999, which allowed the excavation of 84 graves containing skeletal remains of 99 individuals buried from the third century B.C. to the second century A.D. The graves were organized in three main sectors (A, B, and C) that, based on AMS carbon-14 dating of human bones, progressively expanded from south to north (i.e., Sector A is the oldest followed by Sector B and Sector C). The development of Sector C corresponds to the end of the necropolis and may reflect a Turkish influence on the Xiongnu tribe (Keyser-Tracqui et al., 2003).
and:
The results showed, however, that individuals buried in sector C represent a specific kin group clearly differentiated from the rest of the necropolis based on nonmetric
data (Table 4), and confirmed by the genetic data. This might be explained on the basis that these individuals are suggested to be of Turkish origin, based on their shared single paternal lineage, unique in the necropolis and affiliated with Turkish populations (Keyser-Tracqui et al., 2003). However, the sector C individuals share the same maternal lineages with individuals buried in sectors A and B, which could explain the global homogeneity of the population as a whole. The particular characteristics of the sample from sector C suggests a possible shift in the population demographics, caused by the emergence of a Turkish component in the Xiongnu population at the end of the necropolis use and at the end of the first steppe empire led by the Xiongnu. The fact that this particular subgroup of the population buried in sector C was detected by nonmetric traits analysis demonstrated that nonmetric traits are an efficient tool when analyzing population microevolution.
The Y chromosome results are found in Table 2 of the original paper.

I ran the Y-STR profile of the shared patrilineage over the haplogroup predictor, but I don't get a clear estimate for the Y-STR profile (grave 46 in Table 2).

A YHRD search gave the following results:
The high frequency in Kazakhs and Yakuts, with a little spillover in both China and eastern Europe is certainly consistent with a Turkic origin of this haplotype.

Finally, I gave it a try at ysearch, getting a match with a Pole and a 1-step match with a Czech, both of which are listed as C3-tested.

So, there you have it, archaeology, non-metric data, Y-chromosomes, and a little use of online tools gives us a first glimpse on what may have been a group of ancient Turkic individuals. Of course here are theories-a-plenty about what language the Xiongnu originally spoke, so it would be premature to arrive at any firm conclusions.

Interestingly, C3 is also present in a different 2,000-year old Xiongnu individual from NE Mongolia from the Duurlig Nars site, but an earlier group of Xiongnu-related individuals from China (Pengyang) belonged to haplogroup Q.

American Journal of Physical Anthropology doi:10.1002/ajpa.21322

Comparison between morphological and genetic data to estimate biological relationship: The case of the Egyin Gol necropolis (Mongolia)

François-X. Ricaut et al.

Osseous and dental nonmetric (discrete) traits have long been used to assess population variability and affinity in anthropological and archaeological contexts. However, the full extent to which nonmetric traits can reliably be used as a proxy for genetic data when assessing close or familial relationships is currently poorly understood. This study represents the unique opportunity to directly compare genetic and nonmetric data for the same individuals excavated from the Egyin Gol necropolis, Mongolia. These data were analyzed to consider the general efficacy of nonmetric traits for detecting familial groupings in the absence of available genetic data. The results showed that the Egyin Gol population is quite homogenous both metrically and genetically confirming a previous suggestion that the same people occupied the necropolis throughout the five centuries of its existence. Kinship analysis detected the presence of potential family burials in the necropolis. Moreover, individuals buried in one sector of the necropolis were differentiated from other sectors on the basis of nonmetric data. This separation is likely due to an outside Turkish influence in the paternal line, as indicated by the results of Y-chromosome analysis. Affinity matrices based on nonmetric and genetic data were correlated demonstrating the potential of nonmetric traits for detecting relationships in the absence of genetic data. However, the strengths of the correlations were relatively low, cautioning against the use of nonmetric traits when the resolution of the familial relationships is low. Am J Phys Anthropol 2010. © 2010 Wiley-Liss, Inc.

Link

January 21, 2010

R1a1/U2e male in 2,000-year old Mongolian Xiongnu

Related:
American Journal of Physical Anthropology doi:10.1002/ajpa.21242

A western Eurasian male is found in 2000-year-old elite Xiongnu cemetery in Northeast Mongolia

Kijeong Kim et al.

Abstract

We analyzed mitochondrial DNA (mtDNA), Y-chromosome single nucleotide polymorphisms (Y-SNP), and autosomal short tandem repeats (STR) of three skeletons found in a 2,000-year-old Xiongnu elite cemetery in Duurlig Nars of Northeast Mongolia. This study is one of the first reports of the detailed genetic analysis of ancient human remains using the three types of genetic markers. The DNA analyses revealed that one subject was an ancient male skeleton with maternal U2e1 and paternal R1a1 haplogroups. This is the first genetic evidence that a male of distinctive Indo-European lineages (R1a1) was present in the Xiongnu of Mongolia. This might indicate an Indo-European migration into Northeast Asia 2,000 years ago. Other specimens are a female with mtDNA haplogroup D4 and a male with Y-SNP haplogroup C3 and mtDNA haplogroup D4. Those haplogroups are common in Northeast Asia. There was no close kinship among them. The genetic evidence of U2e1 and R1a1 may help to clarify the migration patterns of Indo-Europeans and ancient East-West contacts of the Xiongnu Empire. Artifacts in the tombs suggested that the Xiongnu had a system of the social stratification. The West Eurasian male might show the racial tolerance of the Xiongnu Empire and some insight into the Xiongnu society.

Link

May 19, 2009

More on prehistoric South Siberians (Keyser et al. 2009)

This seems like a compendium of these authors' previous work (see here and links therein) which had appeared in forensic journals so far; there seems to be more material in this paper than in the previous shorter papers, but as far as I can tell, no new genetic results.

There is also supplementary data in the article.

From the paper:
The additional analysis performed on Xiongnu specimens revealed that whereas none of the specimens from the Egyin Gol valley bore this haplogroup, the Scytho-Siberian skeleton from the Sebÿstei site exhibited R1a1 haplogroup.
A previous study on Egyin Gol from Mongolia by Keyser et al.

More from the paper:
A search in the YHRD database as well as in our own databank revealed that none of the Y-STR haplotypes obtained from the south Siberian samples perfectly matched (at 17 loci) those included in the databases. Nevertheless, when not all loci were scored, matches were found for all samples except two (S07 and S32) for which even the search based on the 9-loci minimal haplotype was fruitless (Table 4).
The article includes fairly comprehensive searches of the discovered Y-chromosome and mtDNA types in modern populations.

The mtDNA results:
Twenty samples were found to belong to west Eurasian haplogroups (U2, U4,
U5a1, T1, T3, T4, H5a, H6, HV, K, and I), whereas the 6 remaining samples were attributed to east Eurasian haplogroups (Z, G2a, C, F1b and N9a).
Interestingly:
Moreover, it is likely that some mtDNA lineages were carried to southern Siberia from the Volga–Ural region. Incidentally, in the fifth century BC, Herodotus mentioned transit trade occurring in Central Asia along a route that stretched from the Urals in the west to the Altai and the Minusinsk Basin in the east (Hemphill and Mallory 2004). In Altai, the presence of the R1a1 haplogroup in the middle of the fifth century BC is confirmed by the sample SEB 96K2 of Ricaut et al. (2004) which was found to belong to this Y-haplogroup. The boundary of the eastern European influence seems to be fixed at the peri-Baikal area since no R1a1 haplogroup was found in the Xiongnu specimens of the Northern border of Mongolia.
Link to Ricaut et al. (2004). This is in good agreement with the anthropological picture by Alexeev:
"The boundary of the Europeoid movement is clearly fixed at Lake Baikal. To the east of Baikal no palaeoanthropological find bears any traces of Europeoid admixture."
See also my compendium on ancient Y-chromosome studies.

Human Genetics doi:10.1007/s00439-009-0683-0

Ancient DNA provides new insights into the history of south Siberian Kurgan people.

Keyser C. et al.

Abstract

To help unravel some of the early Eurasian steppe migration movements, we determined the Y-chromosomal and mitochondrial haplotypes and haplogroups of 26 ancient human specimens from the Krasnoyarsk area dated from between the middle of the second millennium BC. to the fourth century AD. In order to go further in the search of the geographic origin and physical traits of these south Siberian specimens, we also typed phenotype-informative single nucleotide polymorphisms. Our autosomal, Y-chromosomal and mitochondrial DNA analyses reveal that whereas few specimens seem to be related matrilineally or patrilineally, nearly all subjects belong to haplogroup R1a1-M17 which is thought to mark the eastward migration of the early Indo-Europeans. Our results also confirm that at the Bronze and Iron Ages, south Siberia was a region of overwhelmingly predominant European settlement, suggesting an eastward migration of Kurgan people across the Russo-Kazakh steppe. Finally, our data indicate that at the Bronze and Iron Age timeframe, south Siberians were blue (or green)-eyed, fair-skinned and light-haired people and that they might have played a role in the early development of the Tarim Basin civilization. To the best of our knowledge, no equivalent molecular analysis has been undertaken so far.

Link

May 01, 2008

Ancient Y chromosome studies

(Last Updated 24 Dec 2013) I was looking at my ancient DNA archives, and, while still not as common as mtDNA, there have been quite a few archaeogenetic studies involving human Y chromosomes.

Paleolithic Siberian from Mal'ta [1 R*]
Mesolithic Europeans from Luxembourg and Sweden [2 I2a1b, 1 I2, 2 I]
Neolithic Linearbandkeramik from Derenburg [2 F*(xG,H,I,J,K), 1 G2a3]
Bronze Age from West Liao-River northern China [N-M231, O3-M122]
Lower Xiajiadian Bronze Age West Liao-River northern China [3 N1(xN1a,N1c, 2 O3]
Upper Xiajiadian Bronze Age West Liao-River northern China [1 C3e, 3 N1c, 1 N1(xN1a,N1c), 2 O3a, 2 O3a3c]
Northern Steppe culture Bronze Age West Liao-River northern China [12 C3e]
Prehistoric Paleo-Eskimo from Greenland [1 Q1a]
Ancient Chinese from the Yangtze River [14 O1, 3 O2a, 7 O3*, 5 O3d, 1 O3e, 18 undetermined]
Bronze Age Lichtenstein Cave in Germany [estimated presence I1b2*, R1a1, R1b1c]
Ancient Mongolian [presence of Tat-C in Yakut and Xiongnu]
Ancient Egyin Gol Mongolians and here and here [Y-STR in Table 2 of second study; N3, Q, C]
Ancient Mongolian Xiongnu [1 R1a1]
New Kingdom Egyptian pharaoh Ramesses III [1 E1b1a]
Aboriginals from Canary Islands [E-M78, E-M81, J-M267, E-M33, I-M170, K-M9, P-M45, R-M269]
Late Antique Basques [4 I, 2 R1b3d, 19 R1(xR1a1), 2 R-M173]
Late Antique Imperial Roman from Bavaria [2 R1b, 2 I1, 2 E1b1b, 2 I1/G2a]
Medieval Hungarians [Two Tat-C out of four]
Medieval Germans from Ergolding, Bavaria, Germany [4 R1b (two siblings), 2 G2a]
Medieval Swedes from Stockholm [2 I1, probably related]
Recent Frozen Yakuts [8 N1c, 5 non-N1c]

April 06, 2006

Population origins of Mongolians

More on this after I get a chance to read the paper...

Am J Phys Anthropol. 2006 Apr 4; [Epub ahead of print]

Population origins in Mongolia: Genetic structure analysis of ancient and modern DNA.

Keyser-Tracqui C, Crubezy E, Pamzsav H, Varga T, Ludes B.

In the present study, nuclear (autosomal and Y-chromosome short tandem repeats) and mitochondrial (hypervariable region I) ancient DNA data previously obtained from a 2,300-year-old Xiongnu population of the Egyin Gol Valley (south of Lake Baikal in northern Mongolia) (Keyser-Tracqui et al. 2003 Am. J. Hum. Genet. 73:247-260) were compared with data from two contemporary Mongolian populations: one from the same location (Egyin Gol Valley plus a perimeter of less than 100 km around the valley), and one from the whole of Mongolia. The principal objective of this comparative analysis was to assess the likelihood that genetic continuity exists between ancient and present-day Mongolian populations. Since the ancient Xiongnu sample might have been composed of some of the ancestors of the present-day Yakuts, data from a present-day Yakut population, as well as published data from Turkish populations, were also included in the comparative analysis. The main result of our study was the genetic similarity observed among Mongolian samples from different periods and geographic areas. This result supports the hypothesis that the succession over time of different Turkic and Mongolian tribes in the current territory of Mongolia resulted in cultural rather than genetic exchanges. Furthermore, it appears that the Yakuts probably did not find their origin among the Xiongnu tribes, as we previously hypothesized.

Link

December 03, 2005

mtDNA of Neolithic Siberians from Lake Baikal

A new article for the Ancient DNA Compendium. Geneticists have studied the genetic structure of Neolithic Mongoloids from the Lake Baikal region. It was previously thought that there was an 800-year "gap" in the occupation of the studied region, and the mtDNA data supports this theory, because populations before, and after this gap were quite different in their mtDNA profiles. Here are the haplogroup frequencies:

Free Image Hosting at www.ImageShack.us

Interesting quote about the continuity of population from the Neolithic to the Hun period:
Russian scholars generally believe that the Xiongnu were immigrants who did not interact with the indigenous groups in the region (Okladnikov, 1964). However, the similarity of Serovo-Glazkovo and Xiongnu mtDNA haplogroup distributions suggests that gene flow may have occurred between matrilineal descendents of the Serovo-Glazkovo and groups representing the northern extent of the Huns. This association is compelling, as it suggests that temporal stability was maintained in the regional matrilineal gene pool of Lake Baikal for over four millennia (i.e., from 4200 BC–200 AD).
And on possible non-Mongoloid elements in the population:
The only definitive non-East Eurasian haplogroup identified in either population is haplogroup U5a. The geographic origins of haplogroup U5a are ambiguous, as it has been observed in both West and East Eurasian populations (Richards et al., 1998; Sykes, 1999; Derenko et al., 2002b, 2003), but it has great temporal depth. This haplogroup was detected both in many modern Siberian groups (e.g., Derbeneva et al., 2002a,b; Derenko et al., 2003; Pakendorf et al., 2003; Schurr et al., 2004) and in other prehistoric Asian cemetery populations (e.g., Oota et al., 1999; Keyser-Tracqui et al., 2003). By exploring the geographic origins of haplogroup U5a, it may be possible to reveal another facet of Siberian population history.

Am J Phys Anthropol. 2005 Dec 1; [Epub ahead of print]

Population affinities of Neolithic Siberians: A snapshot from prehistoric Lake Baikal.

Mooder KP, Schurr TG, Bamforth FJ, Bazaliiski VI, Savel'ev NA.

Archaeological evidence supports the inhabitation of the Lake Baikal region since the Paleolithic. Both metric and nonmetric osteological studies suggest that Neolithic Cis-Baikal populations are the ancestors of contemporary inhabitants of the region. To date, ancient DNA data have not been used to corroborate this biological continuity hypothesis. This study presents a temporal snapshot of the Cis-Baikal Neolithic by examining mtDNA diversity in two cemetery populations situated on the Angara River downstream of Lake Baikal. The 800 years separating the use of the two cemeteries is thought to represent a biocultural hiatus in the Cis-Baikal region, one that ended when a new group migrated into the area. To assess the likelihood that genetic continuity exists between these two Neolithic groups, we examined both mtDNA coding region and hypervariable region I (HVI) polymorphisms from skeletal remains excavated from both cemeteries (Lokomotiv and Ust'-Ida). The mtDNA haplogroup distributions of the two cemetery populations differ significantly, suggesting that they were biologically distinct groups. When the biological distance between these Neolithic groups is compared with modern Siberian and other East Eurasian groups, the posthiatus group (Serovo-Glazkovo) generally aligns with contemporary Siberians, while the prehiatus (Kitoi) individuals are significantly different from all but modern Kets and Shorians living in the Yenisey and Ob River basins to the west of Lake Baikal. These results suggest that the Lake Baikal region experienced a significant depopulation event during the sixth millennium BP, and was reoccupied by a new immigrant population some 800 years later.

Link