Showing posts with label N9a. Show all posts
Showing posts with label N9a. Show all posts

September 03, 2013

ISABS 2013 abstracts

From the book of abstracts (pdf):

MITOCHONDRIAL DNA AND PHYLOGENETIC ANALYSIS OF PREHISTORIC NORTH AFRICAN POPULATIONS
North Africa is located at a crossroad between Europe, Africa and Asia and has been inhabited since the Prehistoric time. In the Epipaleolithic period (23.000 years to 10.000 years BP), the Western North Africa has been occupied by Mecha- Afalou Men, authors of the Iberomaurusian industry. The origin of the Iberomaurusians is unresolved, several hypotheses have been forwarded. With the aim to contribute to a better knowledge of the Iberomaurusian settlement we analysed the mitochondrial DNA (mtDNA) of skeletons exhumed from the prehistoric site of Taforalt in Morocco (23.000-10.800 years BP) and Afalou in Algeria (11.000 to 15.000 BP -Algeria). Hypervariable segment 1 of mtDNA from 38 individuals were amplified by Real-Time PCR and directly sequenced. Sequences were aligned with the reference sequence to perform the mtDNA classification within haplogroups. Phylogenetic analysis based on mitochondrial sequences from Mediterranean populations was performed using Neighbor-Joining algorithm implemented in MEGA program. mtDNA sequences from Afalou and Taforalt were classified in Eurasiatic and North African haplogroups. We noted the absence of Sub-Saharan haplotypes. Phylogenetic tree clustered Taforalt with European populations. Our results excluded the hypothesis of the sub-Saharan origin of Iberomaurusians populations and highlighted the genetic flow between Northern and Southern cost of Mediterranean since Epipaleolithic period.

DISCONTINUITY SCREENING OF THE EARLY FARMERS’ MT-DNA LINEAGES IN THE CARPATHIAN BASIN
Discontinuous mitochondrial (mt) haplotype data between Central-Europe’s first farmers and contemporary Europeans have been described before. Hungary was a key-area of the Neolithisation, in the route of Neolithisation following the River Danube, and that was also the birthplace of the Linear Pottery Culture, which later colonised Western and Northern Europe. Neolithic and post-Neolithic human remains as well as contemporary population of Hungary is involved in our project to gain information on their mt-haplotype pattern and especially on the frequency of Asian haplotypes in the Carpathian Basin. HVS-I sequences from nt15977 to nt16430 of Neolithic specimens with sufficient mtDNA preservation among an extended Neolithic collection were analysed for polymorphisms, identifying 23 different ones. A novel, N9a, N1a, C5, D1/G1a, M/R24 haplogroups were determined among the pre-industrial Hungarians. The presence of Asian haplotypes in the ancient populations must be taken into consideration when reconstructing the population history of Europe and Asia, so a survey of the recent Asian haplotype frequency in Europe is unavoidable. The ancient and recent haplotype pattern of Hungary is definitely worth further investigation to test a theory on the continuous population history of Europe, wheter genetic gaps between ancient and recent human populations of Europe were more likely to be detected. 

ANTHROPOLOGIC AND MITOCHONDRIAL DNA ANALYSIS OF A MEDIEVAL GRAVEYARD FROM SOPOT (CROATIA)
Anthropologic and DNA analysis of human remains recovered from a graveyard in ©opot near Benkovac (Croatia) dating to the 14th/15th century was conducted in order to reconstruct the origin and life conditions of the people populating the region at that time. The dynamics of the population represented in this graveyard are important for understanding Croatian history because the deceased individuals were buried according to pagan ritual which was uncommon in a post Christianization period. Human remains from a total of 31 graves were analyzed, in which 47 individuals were found (9 female, 23 male and 15 children). Average age at death for adults was lower than expected (for female 28.9, male 32.4 years), suggesting that the living conditions of these individuals were poor. In addition, 10 antemortem traumas were visible on 6 adults, which is a higher rate than expected, and indicates potential violence within the population group. Finally, mitochondrial DNA (mtDNA) analysis was performed on hypervariable regions one and two for 46 of the individuals. Due to the age and condition of the remains, only 19 of the samples yielded full sequence profiles. Haplogroup analysis was performed for these 19 individuals, with the majority of the results falling within the most common groups in present-day Croatia. However, examination of the lesscommon haplogroups suggested a possible migration of individuals from Asia. Collectively, the physical and molecular results from this study provide evidence to suggest that individuals recovered from this gravesite are not from the current indigenous population.
MATERNAL GENETIC PROFILE OF A NORTHWEST ALGERIAN POPULATION
The North African population gene pool based on mitochondrial DNA (mtDNA) polymorphisms has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. Recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North- South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the continent. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population. mtDNA sequences analysis was performed on the regulatory hypervariable segment I region (HVSI). Haplogroup diagnostic mutations were analyzed using PCR-RFLPs and/or SNaPshot multiplex reactions. Of all North African populations, Eurasian lineages are the most frequent in Algeria (80%) while sub-Saharan Africa origin accounts for the remaining (20%). Within them, the North African genetic component U6 and M1 count for 20%. Indeed, the U6 haplogroup, highly distributed in Northwestern African populations, show a high frequency in Algeria (11.83%), while, the M1 frequency (7.1%) raises an anomalous peak in its decreasing Northeast - Northwest gradient. Moreover, the high frequency of HV subgroups (38.33%) point to direct maritime contacts between the European and North African western sides of the Mediterranean. Besides, the most common western H subgroups, H1 (47.8%) and H3 (10.1%), represent 60% of H lineages. These frequencies and HV0 (7.5%) lie well within the observed Northwestern to Northeastern African decreasing gradients.
MATERNAL GENETIC VARIATION OF THE SLOVENIAN POPULATION IN A BROADER EUROPEAN CONTEXT AND COMPARED TO ITS PATERNAL COUNTERPART
Slovenia is a European country situated at the crossroads of main European cultural and trade routes. It is geographically more linked to Central Europe, but history draws it closer together to its ex-Yugoslavian, Southeast European (SEE) neighbors. Slovenian maternal heritage has not been analyzed since 2003 and our aim was to analyze SNP markers of 97 Slovenian mtDNAs in high resolution to see where this population fits according to its maternal genetic variation. We compared the Slovenian sample with the neighboring SEE populations, as well as with other published European population datasets. Also, we compared the obtained mtDNA variation results with the available Slovenian Y chromosome data to see how these two uniparental marker systems correspond to each other. In the PC plot based on mtDNA haplogroups frequencies, Slovenian population has an outlying position mostly due to the increased prevalence of J (14.4%) and T (15.4%) clade and especially because of the abundance and diversity of J1c samples in Slovenia, represented with 8 haplotypes and in a percentage of >11%. Although in an outlying position, Slovenian mtDNA variation still shows a certain degree of affinity to SEE. On the contrary, Slovenia’s paternal genetic heritage yielded results that correspond to the population’s geographic location and groups Slovenian population considerably closer to Central European countries, based on increased prevalence of Northern/Central European R1a-M198 and decreased frequency of Balkan-specific I2a2-M423. Such differences in maternal and paternal marker systems could indicate that Slovenian genetic variation was influenced by sex-biased demographic events.
AN ASIAN TRACE IN THE GENETIC HERITAGE OF THE EASTERN ADRIATIC ISLAND OF HVAR
The Island of Hvar is situated in the central eastern Adriatic, and its relatively small rural population has been reproductively isolated thought history. Therefore, founder effects, genetic drift and inbreeding have had significant role in the shaping of current genetic diversity of Hvar Islanders. We analyzed Y-chromosome SNP markers of 412 Hvar islanders in high resolution, with the aim to investigate the current paternal genetic diversity. We found a relatively high frequency (6.1%) of unrelated male samples belonging to the Q*-M424 haplogroup, which is unusual for European populations. Interestingly, a previous study showed 9 individuals from Hvar with mitochondrial haplogroup F, which is almost absent in Europe. Both findings could indicate a certain connection with Asian populations, where these haplogroups are most common. This might be a result of several migratory events in the history, one of which could be linked to the ancient Silk Road, the other a consequence of the arrival of the Slavs, following the Avars, to the eastern Adriatic in the 6th century or due to the expansion of the Ottoman Empire in 16th to 18th century. The presence of these rare mitochondrial and Y-chromosome lineages are an example of founder effect and random genetic drift which, in this small island with a high degree of isolation and endogamy, had a strong impact on shaping the genetic diversity of the population. 
GENETIC PORTRAIT OF THE BESERMYAN ETHNIC GROUP BASED ON MTDNA HAPLOGROUP STUDY
Besermyan are a small ethnic group living in the Volga-Ural region of Russia. They belong to Finno-Ugric language group, but speak a special dialect. There are some Bulgar-Chuvash borrowings in their adverb vocabulary that are absent in other dialects of the Udmurt language. Besermyan live in the northwestern part of modern Udmurtia in the Cheptsa basin. In 2002 their number was about three thousand. The Besermyan origin is a very interesting issue. There is a view that the endonym Besermyan (beserman) is derived from the Turkic word which means flMuslim« in Arabic. This hypothesis, along with their language, hints at the origin of this ethnic group; however the genetic portrait of Besermyan has not been described yet. In our study we used the data of mitochondrial DNA (mtDNA) HVSI sequencing from 98 Besermyans representing 10 villages in Udmurtia Republic of Russia. The prevalence of Western Eurasian mtDNA lineages (91.7%) over Eastern Eurasian ones (9.2%) was shown in the studied population which is consistent with the structure of mtDNA pool of Finno-Ugric ethnic groups of the Volga-Ural region. Some Eastern Eurasian lineages in Besermyan are represented by haplogroups D4b, A4b and Z1a which are also common in Udmurts. It is important to note though that the share of Western Eurasian component in Udmurts according to previous study by Bermisheva et al. (2002) is about 74.5% so mtDNA haplogroup distribution in Besermyans is closer to other Finno-Ugric people of the Volga-Ural region: Mordvins and Maris.
COSMOPOLITAN CENTRAL ASIA: TAJIK MTDNA TRACES THE EASTWEST MOVEMENT OF ANCIENT NOMADS 
Tajikistan is a country in the mountains of southeast Central Asia. Due to its isolation, mtDNA variation in the Tajiks has been fragmentary studied on a limited number of samples. In 1997 saliva samples were collected from unrelated Tajiks across Tajikistan. After long-term preservation DNA was extracted from 2 mm FTA discs. Due to degradation mtDNA was amplified using the primary and secondary PCRs with nested primers in the multiplex format. The origin of 91 mitochondrial genomes from Tajikistan traced from western Eurasia (62.6%), eastern Eurasia (25.3%), south Asia (11.0%), and North Africa (1.1%). Significant population structure in the distribution of these mtDNA lineages was revealed within the regional groups in Tajikistan. The mtDNA variation was compared between the Tajiks and 45 populations of Eurasia. Pairwise Fst comparisons and the correspondence analysis revealed non-significant differences between the Tajik and Uzbek populations. Although both nations speak languages belonging to different linguistic groups, this result corresponds to their cultural and economic proximity. Surprisingly, after the Uzbeks, the Tajik mtDNA pool most closely resembles to the Ossetians, an Indo-Iranian people from the North Caucasus. The Tajiks also display intensive gene flow and admixture with some other populations of Central Asia and the Iranian Plateau living along the centers and crossroads of the earliest civilizations and belonging to different linguistic groups including the Uyghur, Kazakh, Karakalpak, Turkmen, Pathans, Iranian Arabs, and Gilaki. This study demonstrates an impact of ancient nomad migrations and invasions on the distribution of mtDNA variation in Eurasia. 

March 20, 2012

Rare mtDNA haplogroups of North Asia

From the paper:
The results of our study provided an additional support for the existence of limited maternal gene flow between eastern Asia/southern Siberia and eastern Europe revealed by analysis of modern and ancient mtDNAs previously [12], [37], [39], [48], [42], [58], [59]. Two more mtDNA subclusters which may be indicative of eastern Asian influx into gene pool of eastern Europeans have been revealed within haplogroups M10 and N9a. The presence of N9a3a subcluster only in eastern European populations may indicate that it could arose there after the arrival of founder mtDNA from eastern Asia about 8–13 kya. It is noteworthy that another eastern Asian specific lineage, C5c1, revealed exclusively in some European populations (Poles, Belorussians, Romanians), shows evolutionary ages within frames of 6.6–11.8 kya depending on the mutation rates values [12]. In addition, recent molecular-genetic study of the Neolithic skeletons from archaeological sites in the Alföld (Hungary) has demonstrated high frequency of eastern Asian mtDNA haplogroups in ancient inhabitants of the Carpathian Basin [42]. Specifically, haplogroups N9a and C5 were also revealed in remains, thus indicating that genetic continuity for some eastern Asian mtDNA lineages in Europeans is possible from the Neolithic Period. Prehistoric migrations associated with the distribution of the pottery-making tradition initially emerged in the forest-steppe belt of northern Eurasia starting at about 16 kya and spread to the west to reach the south-eastern confines of eastern European Plain by about 8 kya [60] could be suggested as a potential cause for eastern Asian mtDNA haplogroups appearance in Europe. More information from complete mtDNA sequences as well as the other genetic markers in the contemporary and extinct populations of Eurasia would be helpful to validate our conclusions.
PLoS ONE 7(2): e32179. doi:10.1371/journal.pone.0032179

Complete Mitochondrial DNA Analysis of Eastern Eurasian Haplogroups Rarely Found in Populations of Northern Asia and Eastern Europe

Miroslava Derenko et al.

With the aim of uncovering all of the most basal variation in the northern Asian mitochondrial DNA (mtDNA) haplogroups, we have analyzed mtDNA control region and coding region sequence variation in 98 Altaian Kazakhs from southern Siberia and 149 Barghuts from Inner Mongolia, China. Both populations exhibit the prevalence of eastern Eurasian lineages accounting for 91.9% in Barghuts and 60.2% in Altaian Kazakhs. The strong affinity of Altaian Kazakhs and populations of northern and central Asia has been revealed, reflecting both influences of central Asian inhabitants and essential genetic interaction with the Altai region indigenous populations. Statistical analyses data demonstrate a close positioning of all Mongolic-speaking populations (Mongolians, Buryats, Khamnigans, Kalmyks as well as Barghuts studied here) and Turkic-speaking Sojots, thus suggesting their origin from a common maternal ancestral gene pool. In order to achieve a thorough coverage of DNA lineages revealed in the northern Asian matrilineal gene pool, we have completely sequenced the mtDNA of 55 samples representing haplogroups R11b, B4, B5, F2, M9, M10, M11, M13, N9a and R9c1, which were pinpointed from a massive collection (over 5000 individuals) of northern and eastern Asian, as well as European control region mtDNA sequences. Applying the newly updated mtDNA tree to the previously reported northern Asian and eastern Asian mtDNA data sets has resolved the status of the poorly classified mtDNA types and allowed us to obtain the coalescence age estimates of the nodes of interest using different calibrated rates. Our findings confirm our previous conclusion that northern Asian maternal gene pool consists of predominantly post-LGM components of eastern Asian ancestry, though some genetic lineages may have a pre-LGM/LGM origin.

Link

October 07, 2011

Major population expansion in mtDNA of East Asians


Table 2 has the expansion times.

PLoS ONE 6(10): e25835. doi:10.1371/journal.pone.0025835

Major Population Expansion of East Asians Began before Neolithic Time: Evidence of mtDNA Genomes

Hong-Xiang Zheng et al.

It is a major question in archaeology and anthropology whether human populations started to grow primarily after the advent of agriculture, i.e., the Neolithic time, especially in East Asia, which was one of the centers of ancient agricultural civilization. To answer this question requires an accurate estimation of the time of lineage expansion as well as that of population expansion in a population sample without ascertainment bias. In this study, we analyzed all available mtDNA genomes of East Asians ascertained by random sampling, a total of 367 complete mtDNA sequences generated by the 1000 Genome Project, including 249 Chinese (CHB, CHD, and CHS) and 118 Japanese (JPT). We found that major mtDNA lineages underwent expansions, all of which, except for two JPT-specific lineages, including D4, D4b2b, D4a, D4j, D5a2a, A, N9a, F1a1'4, F2, B4, B4a, G2a1 and M7b1'2'4, occurred before 10 kya, i.e., before the Neolithic time (symbolized by Dadiwan Culture at 7.9 kya) in East Asia. Consistent to this observation, the further analysis showed that the population expansion in East Asia started at 13 kya and lasted until 4 kya. The results suggest that the population growth in East Asia constituted a need for the introduction of agriculture and might be one of the driving forces that led to the further development of agriculture.

Link

September 22, 2011

Unexpected ancient mtDNA from Neolithic Hungary

This seems like a tie-in to another recent post on Neolithic and Bronze Age Ukraine. I don't think even a science fiction writer could have predicted the kinds of ancient DNA results we are getting from Europe. We have genetic discontinuity between Paleolithic and Neolithic, and between Neolithic and present, and, apparently, discontinuity between Neolithic cultures themselves, and wholly unexpected links to East Asia all the way to Central Europe.

When faced with data such as this, one can only say: what the hell happened during European prehistory?

UPDATE (8 Jun 2012): The age of these remains has been questioned.

Journal of Human Genetics advance online publication 15 September 2011; doi: 10.1038/jhg.2011.103

HVS-I polymorphism screening of ancient human mitochondrial DNA provides evidence for N9a discontinuity and East Asian haplogroups in the Neolithic Hungary

Zsuzsanna Guba et al.

Analysis of mitochondrial mutations in the HVS-I region is an effective method for ancient human populational studies. Discontinuous haplotype data between the first farmers and contemporary Europeans has been described before. Our contribution is based on a survey initiated on the Neolithic skeletons from Hungarian archaeological sites in the Alföld. This Lowland, the Hungarian Plain, is well excavated as an important region for spread of Neolithic culture from Near East and Balkans toward Central and Western Europe, started circa 8000 years ago. HVS-I sequences from nt15977 to nt16430 of 11 such specimens with sufficient mitochondrial DNA preservation among an extended Neolithic collection were analysed for polymorphisms, identifying 23 different ones. After assigning all single-nucleotide polymorphisms, a novel, N9a, N1a, C5, D1/G1a, M/R24 haplogroups were determined. On mitochondrial control mutations at nt16257 and nt16261, polymorphic PCRs were carried out to assess their distribution in remains. Neolithic data set was compared with contemporary Vác samples and references, resulting in higher frequency of N9a in Alföld as a remarkable genetic discontinuity. Our investigation is the first to study mutations form Neolithic of Hungary, resulting in an outcome of Far Eastern haplogroups in the Carpathian Basin. It is worth further investigation as a non-descendant theory, instead of a continuous population history, supporting genetic gaps between ancient and recent human populations.

Link

May 12, 2010

mtDNA of Tatars from Volga-Ural region (Malyarchuk et al. 2010)

Wikipedia article on Volga Tatars. Some pictures of Kazan Tatars, which look just about what you would expect for 16% eastern Asian mtDNA, i.e., primarily Caucasoid but with visible traces of Mongoloid admixture

Molecular Biology and Evolution, doi:10.1093/molbev/msq065

Mitogenomic diversity in Tatars from the Volga-Ural region of Russia

B. Malyarchuk et al.

To investigate diversity of mitochondrial gene pool of Tatars inhabiting the territory of the middle Volga River basin, 197 individuals from two populations representing Kazan Tatars and Mishars were subjected for analysis of mitochondrial DNA (mtDNA) control region variation. In addition, 73 mitochondrial genomes of individuals from Mishar population were sequenced completely. It was found that mitochondrial gene pool of the Volga Tatars consists of two parts, but western Eurasian component prevails considerably (84% on average) over eastern Asian one (16%). Eastern Asian mtDNAs detected in Tatars belonged to a heterogeneous set of haplogroups (A, C, D, G, M7, M10, N9a, Y, Z), although only haplogroups A and D were revealed simultaneously in both populations. Complete mtDNA variation study revealed that the age of western Eurasian haplogroups (such as U4, HV0a and H) is less than 18,000 years, thus suggesting re-expansion of Eastern Europeans soon after the Last Glacial Maximum.

Link

September 30, 2009

Some mtDNA links between Europe and Asia

I was planning on writing up a more complete narrative for this post, but I don't think the evidence is -as of yet- strong enough to support very strong speculation. I will simply say that the recent results of Bramanti et al. for a U-dominated older mtDNA stratum in Central/North-eastern Europe can be reasonably extended to cover both North-western Europe and northern Eurasia up to Lake Baikal, the prehistoric limit between Caucasoids and Mongoloids.

This boreal zone of U dominance contrasts with that of the Neolithic and Bronze Age inhabitants, where the familiar mix of ten or so main Caucasoid haplogroups makes its appearance, in various proportions and in various degrees of admixture at the eastern end of its expansion. The eastern Caucasoids were probably derived from both (i) West Asia via the spread of the Neolithic economy to the east wherever it could be ecologically supported, (ii) in the more northern parts, from migrations across the steppe from Central and Eastern Europe.

More ancient DNA research is needed to establish (i) how complete was the U dominance in the pre-Neolithic northern zone, and (ii) when, and where did the other Caucasoid haplogroups break into it.

Anyway, here is the post as it stands:

Ricaut et al. (2004) discovered the presence of mtDNA haplogroup N1a (16147A, 16172C, 16223T, 16248T, and 16355T) in an Iron Age Scytho-Siberian skeleton from the Altai, reporting the presence of haplogroup N1a among Iranians and upper caste Havik Brahmins from India.

The same sequence was detected in a Neolithic Central European (DER1) of the Linearbandkeramik (LBK) culture, with reported modern matches in Egypt and Armenia. The following haplogroups were detected in the Neolithic LBK gene pool: H*, N1a, K, HV, T2, V, J, W, U3.

A later study by Gokcumen et al. (2008) discovered the presence of N1a in modern Kazakhs from the Altai:
The haplotypic variation within the seven N1a samples was relatively high (Table 2), with these haplotypes belonging to both the European and Central Asian branches of this haplogroup, as recently defined by Haak et al. (2005). Thus, the source of N1a haplotypes in Altaian Kazakhs was unclear, although they seemed to have originated west of this part of Central Asia (Gokcumen et al., 2007).
Haplogroup N1a was found to be a genuine signature of the Central European Neolithic by contrasting its high representation in the LBK with the overwhelming presence of haplogroup U (and especially U5 and U4) mtDNA among the Paleolithic and Mesolithic populations of the region.

A separate Neolithic Funnel Beaker (TRB) sample from Scandinavia (Malmström et al. 2009) included only three individuals belonging to haplogroups H, J, and T. Obviously, a sample of 3 is insufficient, but the absence of haplogroup U in it parallels that of the LBK. By contrast, the contemporaneous Mesolithic Pitted Ware culture, represented by 19 samples had single instances of J, and T (which may be due to admixture with the TRB), a single instance of haplogroup V, one of the few ones thought to be European in origin, and a gene pool that was apparently dominated by haplogroups U4 and U5. The picture emerging from the northmost European hunter-gatherers is one of a restricted set of haplogroups where U subclades were dominant (about 3/4).

N1a was also detected in medieval high-status Hungarians:
Commoners show a predominance of mtDNA haplotypes and haplogroups (H, R, T), common in west Eurasia, while high-status individuals, presumably conquering Hungarians, show a more heterogeneous haplogroup distribution, with haplogroups (N1a, X) which are present at very low frequencies in modern worldwide populations and are absent in recent Hungarian and Sekler populations.
While, as we saw, N1a was frequent among Neolithic Central Europeans, its absence in Hungarian commoners suggests that it was re-introduced -in the high status individuals- from Asia.

Interestingly, there has been European and Asian mtDNA evidence that allows us to have a good idea of the mtDNA landscape on which N1a-bearing people migrated from west to east:

The pre-farming foragers of Europe were dominated by mtDNA haplogroup U. The easternmost sample in the aforementioned study was from Samara, in European Russia and consisted of a U5a, and a U5a1 sample. How far to the west and east did the U-dominated population of pre-Neolithic northern Caucasoids extend?

Neolithic Siberians from Lake Baikal, the eastermost anthropologically attested limit of prehistoric Caucasoid populations had only U5a as a Western Caucasoid element in a population dominated by Eastern Eurasian mtDNA. Similarly, the Lokomotiv Siberian burials from Lake Baikal only had U5a in an other Mongoloid mtDNA gene pool. Yu Hong, a Sogdian in China (1,400 years ago) also belonged to haplogroup U5.

U5a was not limited to the territory of Central Europe to China in ancient times. It was the haplogroup of Cheddar Man, a Paleolithic Briton, and U5a1 or U5a1a has also been detected in a Mycenaean from Bronze Age Greece. Interestingly, U5a1 seems to have decreased in frequency in Britain from the 4th c. to the present.

Is it possible that negative selection is affecting mtDNA frequencies in Europe? U-haplogroup turns up in many ancient DNA samples, but the discovery that it was absent (or non-detectible) in Neolithic farmers raises the possibility that its reduced frequency may be due to demography, i.e., the overwhelming of Paleolithic foragers by Neolithic (and later) intruders.

We know that in the Bronze and subsequent ages, Siberians from Krasnoyarsk belonged to a rich assortment of Caucasoid haplogroups. It seems that newcomers from the West joined the U-dominated earliest settlers:
Twenty samples were found to belong to west Eurasian haplogroups (U2, U4,
U5a1, T1, T3, T4, H5a, H6, HV, K, and I
), whereas the 6 remaining samples were attributed to east Eurasian haplogroups (Z, G2a, C, F1b and N9a).
At the other end of the Eurasiatic steppe, in the Bronze Age site of Eulau in Germany, the gene pool was also quite different from that of the Paleolithic inhabitants, with haplogroups K1b, U5b, I, H, X2, K1a2 detected.

Haplogroup X2 represents another link between the west and Siberia according to Reidla et al. (2003):
Overall, it appears that the populations of the Near East, the Caucasus, and Mediterranean Europe harbor subhaplogroup X2 at higher frequencies than those of northern and northeastern Europe (P less than .05) and that X2 is rare in Eastern European as well as Central Asian, Siberian, and Indian populations and is virtually absent in the Finno-Ugric and Turkic-speaking people of the Volga-Ural region. [...] the few Altaian (Derenko et al. 2001) and Siberian haplogroup X lineages are not related to the Native American cluster, and they are more likely explained by recent gene flow from Europe or from West Asia.
The Tubalar, Altaic speakers from the northeastern Altai showed a mixed Caucasoid-Mongoloid mtDNA gene pool, with the western component consisting of haplogroups H8, U4b, U5a1, and X2e:
Specifically, northeastern Altai appears to be a good candidate for the ancestral homeland of the haplogroup U4b, which is apparently ancient European. For some haplogroups, such as X2e, the relatively recent arrival to the Altai region is more likely.
Derenko et al. (2002) discovered a rich assortment of Caucasoid haplogroups in several populations from the Altai, including all aforementioned ones (H, HV1, J*, J1, J1b1, T1, T4, U1a, U2, U3, U4, U5a1, I, X and N1a):
The applied approach permitted identification of 60% of mtDNA types the majority of which had southern Caucasoid origin. Less than 10% of mtDNA types were of eastern European origin.
Derenko et al. (2003) also studied several populations from South Siberia where the Caucasoid component was much diminished (17%) with the following haplogroups present: H, U, J, T, I, N1a, X.

May 19, 2009

More on prehistoric South Siberians (Keyser et al. 2009)

This seems like a compendium of these authors' previous work (see here and links therein) which had appeared in forensic journals so far; there seems to be more material in this paper than in the previous shorter papers, but as far as I can tell, no new genetic results.

There is also supplementary data in the article.

From the paper:
The additional analysis performed on Xiongnu specimens revealed that whereas none of the specimens from the Egyin Gol valley bore this haplogroup, the Scytho-Siberian skeleton from the Sebÿstei site exhibited R1a1 haplogroup.
A previous study on Egyin Gol from Mongolia by Keyser et al.

More from the paper:
A search in the YHRD database as well as in our own databank revealed that none of the Y-STR haplotypes obtained from the south Siberian samples perfectly matched (at 17 loci) those included in the databases. Nevertheless, when not all loci were scored, matches were found for all samples except two (S07 and S32) for which even the search based on the 9-loci minimal haplotype was fruitless (Table 4).
The article includes fairly comprehensive searches of the discovered Y-chromosome and mtDNA types in modern populations.

The mtDNA results:
Twenty samples were found to belong to west Eurasian haplogroups (U2, U4,
U5a1, T1, T3, T4, H5a, H6, HV, K, and I), whereas the 6 remaining samples were attributed to east Eurasian haplogroups (Z, G2a, C, F1b and N9a).
Interestingly:
Moreover, it is likely that some mtDNA lineages were carried to southern Siberia from the Volga–Ural region. Incidentally, in the fifth century BC, Herodotus mentioned transit trade occurring in Central Asia along a route that stretched from the Urals in the west to the Altai and the Minusinsk Basin in the east (Hemphill and Mallory 2004). In Altai, the presence of the R1a1 haplogroup in the middle of the fifth century BC is confirmed by the sample SEB 96K2 of Ricaut et al. (2004) which was found to belong to this Y-haplogroup. The boundary of the eastern European influence seems to be fixed at the peri-Baikal area since no R1a1 haplogroup was found in the Xiongnu specimens of the Northern border of Mongolia.
Link to Ricaut et al. (2004). This is in good agreement with the anthropological picture by Alexeev:
"The boundary of the Europeoid movement is clearly fixed at Lake Baikal. To the east of Baikal no palaeoanthropological find bears any traces of Europeoid admixture."
See also my compendium on ancient Y-chromosome studies.

Human Genetics doi:10.1007/s00439-009-0683-0

Ancient DNA provides new insights into the history of south Siberian Kurgan people.

Keyser C. et al.

Abstract

To help unravel some of the early Eurasian steppe migration movements, we determined the Y-chromosomal and mitochondrial haplotypes and haplogroups of 26 ancient human specimens from the Krasnoyarsk area dated from between the middle of the second millennium BC. to the fourth century AD. In order to go further in the search of the geographic origin and physical traits of these south Siberian specimens, we also typed phenotype-informative single nucleotide polymorphisms. Our autosomal, Y-chromosomal and mitochondrial DNA analyses reveal that whereas few specimens seem to be related matrilineally or patrilineally, nearly all subjects belong to haplogroup R1a1-M17 which is thought to mark the eastward migration of the early Indo-Europeans. Our results also confirm that at the Bronze and Iron Ages, south Siberia was a region of overwhelmingly predominant European settlement, suggesting an eastward migration of Kurgan people across the Russo-Kazakh steppe. Finally, our data indicate that at the Bronze and Iron Age timeframe, south Siberians were blue (or green)-eyed, fair-skinned and light-haired people and that they might have played a role in the early development of the Tarim Basin civilization. To the best of our knowledge, no equivalent molecular analysis has been undertaken so far.

Link

May 05, 2009

Alternate mtDNA phylogeny of N and M clades

I would be very interested in hearing from readers who are more up-to-date on mtDNA phylogenetics than myself on what they think of this paper. Until now, we knew that West Eurasians belonged almost entirely in macro-haplogroup N, with the exception of low-frequency haplogroup M1 and a few erratics representing more recent admixture. On the other hand, East Eurasians belonged to both macro-haplogroups N and M. What this paper seems to suggest is that haplogroup N itself has its own East vs. West structure, and the common West (or East) Eurasian haplogroups within N are phylogenetically related in addition to geographically co-existing.

J Mol Evol. 2008 Nov;67(5):465-87. Epub 2008 Oct 15.

PCA and clustering reveal alternate mtDNA phylogeny of N and M clades.

Alexe G, Satya RV, Seiler M, Platt D, Bhanot T, Hui S, Tanaka M, Levine AJ, Bhanot G.

Phylogenetic trees based on mtDNA polymorphisms are often used to infer the history of recent human migrations. However, there is no consensus on which method to use. Most methods make strong assumptions which may bias the choice of polymorphisms and result in computational complexity which limits the analysis to a few samples/polymorphisms. For example, parsimony minimizes the number of mutations, which biases the results to minimizing homoplasy events. Such biases may miss the global structure of the polymorphisms altogether, with the risk of identifying a "common" polymorphism as ancient without an internal check on whether it either is homoplasic or is identified as ancient because of sampling bias (from oversampling the population with the polymorphism). A signature of this problem is that different methods applied to the same data or the same method applied to different datasets results in different tree topologies. When the results of such analyses are combined, the consensus trees have a low internal branch consensus. We determine human mtDNA phylogeny from 1737 complete sequences using a new, direct method based on principal component analysis (PCA) and unsupervised consensus ensemble clustering. PCA identifies polymorphisms representing robust variations in the data and consensus ensemble clustering creates stable haplogroup clusters. The tree is obtained from the bifurcating network obtained when the data are split into k = 2,3,4,...,kmax clusters, with equal sampling from each haplogroup. Our method assumes only that the data can be clustered into groups based on mutations, is fast, is stable to sample perturbation, uses all significant polymorphisms in the data, works for arbitrary sample sizes, and avoids sample choice and haplogroup size bias. The internal branches of our tree have a 90% consensus accuracy. In conclusion, our tree recreates the standard phylogeny of the N, M, L0/L1, L2, and L3 clades, confirming the African origin of modern humans and showing that the M and N clades arose in almost coincident migrations. However, the N clade haplogroups split along an East-West geographic divide, with a "European R clade" containing the haplogroups H, V, H/V, J, T, and U and a "Eurasian N subclade" including haplogroups B, R5, F, A, N9, I, W, and X. The haplogroup pairs (N9a, N9b) and (M7a, M7b) within N and M are placed in nonnearest locations in agreement with their expected large TMRCA from studies of their migrations into Japan. For comparison, we also construct consensus maximum likelihood, parsimony, neighbor joining, and UPGMA-based trees using the same polymorphisms and show that these methods give consistent results only for the clade tree. For recent branches, the consensus accuracy for these methods is in the range of 1-20%. From a comparison of our haplogroups to two chimp and one bonobo sequences, and assuming a chimp-human coalescent time of 5 million years before present, we find a human mtDNA TMRCA of 206,000 +/- 14,000 years before present.

Link

July 28, 2008

Ancient mtDNA from Inner Mongolia

Three individuals with mixed Caucasoid-Mongoloid affinities were an adult female (haplogroup C), 25yo male (haplogroup M), and 25-30yo male (haplogroup A). From the paper:
All haplogroups were Asian-specific, the haplotypes of 10 individuals are shared by modern Han Chinese, and the one-step neighbors to another 7 individuals also mainly distribute in modern Han Chinese (Yao et al., 2002). The phylogenetic analysis of the ancient population and extant Eurasian populations showed that the ancient population most closely related to the Han Chinese, especially the northern Han.
American Journal of Physical Anthropology doi: 10.1002/ajpa.20894

Ancient DNA analysis of human remains from the upper capital city of Kublai Khan

Yuqin Fu et al.

Abstract

Analysis of DNA from human archaeological remains is a powerful tool for reconstructing ancient events in human history. To help understand the origin of the inhabitants of Kublai Khan's Upper Capital in Inner Mongolia, we analyzed mitochondrial DNA (mtDNA) polymorphisms in 21 ancient individuals buried in the Zhenzishan cemetery of the Upper Capital. MtDNA coding and noncoding region polymorphisms identified in the ancient individuals were characteristic of the Asian mtDNA haplogroups A, B, N9a, C, D, Z, M7b, and M. Phylogenetic analysis of the ancient mtDNA sequences, and comparison with extant reference populations, revealed that the maternal lineages of the population buried in the Zhenzishan cemetery are of Asian origin and typical of present-day Han Chinese, despite the presence of typical European morphological features in several of the skeletons.

Link

April 09, 2008

Origins of Mongoloid mtDNA in Slavs

A very interesting article which addresses the issue of the Mongoloid mitochondrial component in Slavs. I like this kind of paper that looks at the minor features of populations, rather than their broad general characteristics that are well known by now, and indeed were known even before genetics came into the picture.

From the paper:
The overwhelming majority of mtDNA clusters, identified in Czechs, were of the western-Eurasian origin. The frequency of eastern-Eurasian (Mongoloid) mtDNA lineages in this population constituted 1.8% (haplogroups A, N9a, and M). African lineage (with the frequency of 0.4%) belonging to haplogroup L2a and marked by the +13803HaeIII variant was also detected.

...

Low frequency of Mongoloid mtDNA variant in Letts and Lithuanians suggests that Mongoloid component was probably not typical of Balto-Slavic protogene pool. Thus, it seems reasonable that accumulation of Mongoloid mtDNA lineages in Slavs and their ancestors was intensified only in the last 4000 years.

...

The highest frequencies of the Mongoloid component are typical of the Russian populations from Russian Pomor’e and Northwestern region. These populations, however, differ in the mtDNA haplogroup composition. It was established that assimilation of the indigenous pre-Slavic population of Eastern Europe by true Slavs was of great importance to the process of the development of Russian population.

...

It is suggested that after the decay of Avar Khaganate the populations included into it were assimilated by Slavic tribes [34]. It is thereby suggested that rather high frequencies of eastern-Eurasian mtDNA lineages observed in the gene pools of some populations of Western and Southern Slavs (especially on the territoryof former Avar Khaganate) can be considered as a consequence of the process described.

Concerning the population of Eastern Europe, it should be noted that the forest zone of Eastern Europe was the area of intense population admixture [35]. It seems likely, that formation of the complex of Mongoloid traits happened not later than in Upper Paleolithic. For this reason, it is suggested that East Siberian populations could have much time for migration to Eastern Europe [35]. The number of such migrations still remains unclear, since in the northwest of Eastern Europe Mongoloid component is detected 10 000–8000 years ago; in Dnepr–Donetsk tribes, 7000–6000 years ago, and on the territory of Ivanovo oblast (Sakhtysh), 6000–5000 years ago [35, 36]. The data on mtDNA variation in Russian populations are consistent with anthropological data, since they point to the substantial differences in the frequencies of Mongoloid mtDNA lineages between the Russian populations of the Russian North, Northwest, and the central/southern regions of the European part of Russia (Table 3). We hope that future investigations would provide
the possibility of analyzing the chronology of the development of the Mongoloid component diversity in the gene pools of Russians and other Slavic populations.

Russian Journal of Genetics, 10.1007/s11177-008-3016-9

On the origin of Mongoloid component in the mitochondrial gene pool of Slavs

B. A. Malyarchuk, M. A. Perkova and M. V. Derenko

Abstract The data on mitochondrial DNA (mtDNA) restriction polymorphism in Czech population (n = 279) are presented. It was demonstrated that in terms of their structure, mitochondrial gene pools of Czechs and other Slavic populations (Russians, Poles, Slovenians, and Bosnians) were practically indistinguishable. In Czechs, the frequency of eastern-Eurasian (Mongoloid) mtDNA lineages constituted 1.8%. The spread of eastern-Eurasian mtDNA lineages belonging to different ethnolinguistic groups in the populations of Europe was examined. Frequency variations of these DNA lineages in different Slavic groups was observed, with the range from 1.2 and 1.6% in Southern and Western Slavs, respectively, to 1.3 to 5.2% in Eastern Slavs, the Russian population of Eastern Europe. The highest frequency of Mongoloid component was detected in the mitochondrial gene pools of Russian populations from the Russian North and the Northwestern region of Russia. This finding can be explained in terms of assimilation of northern-European Finno-Ugric populations during the formation of the Russian population of these regions. The origin of Mongoloid component in the gene pools of different groups of Slavs is discussed.

Link

June 17, 2007

mtDNA of Czechs

Hum Biol. 2006 Dec;78(6):681-96.

Mitochondrial DNA variability in the Czech population, with application to the ethnic history of Slavs.

Malyarchuk BA, Vanecek T, Perkova MA, Derenko MV, Sip M.

Mitochondrial DNA (mtDNA) variability was studied in a sample of 179 individuals representing the Czech population of Western Bohemia. Sequencing of two hypervariable segments, HVS I and HVS II, in combination with screening of coding-region haplogroup-specific RFLP markers revealed that most Czech mtDNAs belong to the common West Eurasian mitochondrial haplogroups (H, pre-V HV*, J, T, U, N1, W, and X). However, about 3% of Czech mtDNAs encompass East Eurasian lineages (A, N9a, D4, M*). A comparative analysis with published data showed that different Slavonic populations in Central and Eastern Europe contain small but marked amounts of East Eurasian mtDNAs. We suggest that the presence of East Eurasian mtDNA haplotypes is not an original feature of the gene pool of the proto-Slavs but rather may be mostly a consequence of admixture with Central Asian nomadic tribes, who migrated into Central and Eastern Europe in the early Middle Ages.

Link

January 06, 2006

Mozart's skull and the DNA of the famous

Scientists are tight-lipped about the genetic testing of the skull believed to be Mozart's. My bet is that it will be his skull. Resarchers have compared him with his maternal grandmother, so I predict that this will be an mtDNA-based study.

So, will Wolfgang Amadeus join the ranks of the famous past and present whose patrilineal or matrilineal haplogroup is recorded? So far we have Genghis Khan [Y: C*(xC3c)], Somerled [Y: R1a1], Thomas Jefferson [Y: K2], the Manchu dynast Nurhachi [Y: C3c] (*), the founder of the Uí Néill dynasty [Y: R1b], the Tyrolean Ice Man [K], Cheddar Man [mt: U5a], Tsar Nicolas [mt: T], Spencer Wells [Y: R1b], and of course none others than Matt Lauer [Y: J2], Katie Couric [mt: K], Ann Curry [mt: N9a], and Al Roker [Y: E*(xE3a) ?] of the Today Show.

Update

Well the "clear result" that the scientists advertised is actually this:
The scientists said on Austrian television Sunday that the skeletons do not match the skull, and that the skeletons are also unrelated - creating a whole new mystery of who is buried the Mozart family crypt.
(*) Whose fictional remains make a cameo in Indiana Jones and the Temple of Doom for those interested in movie trivia.

Update

See also Famous DNA.

Update

More here.

“I am quite disappointed that the mystery continues,” said Parsons. “All the samples from the three who were believed to be relatives of Mozart all had different mitochondrial DNA from each other, and from the Mozart skull. So if any one of them is an actual maternal relative of Mozart, it means that the skull is not Mozart’s. We don’t know if that is the case so the final analysis is inconclusive.

“We have attained definitive results from the skull,” said Parsons. “In the future, if anyone comes forward with an authentic matrilineal relative or a paternal relative, we now have ‘y’ chromosomal data and we will be in a position to make a confirmation. It’s considered to be known where Mozart’s sister Nannerl is buried, but I don’t know if there are any plans in Austria to act on that information and work another archeological exhumation.”

After several months of testing, the true identity of the skull remains inconclusive to be that of world-renowned 18th-century classical musical composer Mozart.

November 18, 2004

mtDNA of Hmong-Mien

Molecular Biology and Evolution, doi:10.1093/molbev/msi055

Genetic Structure of Hmong-Mien Speaking Populations in East Asia as Revealed by mtDNA Lineages

Bo Wen et al.

Abstract

Hmong-Mien (H-M) is a major language family in East Asia, and its speakers distribute primarily in southern China and Southeast Asia. To date, genetic studies on H-M speaking populations are virtually absent in the literatures. In this report, we analyzed genetic variations in the mtDNA HVS1 region and diagnostic variants in the coding regions in 537 individuals sampled from 17 H-M populations across East Asia. The results showed that the haplogroups that are predominant in the southern East Asia including B, R9, N9a, and M7 account for 63% (ranging from 45% to 90%) of mtDNAs in H-M populations. Furthermore, AMOVA, phylogenetic tree and principal component (PC) analysis demonstrate closer relatedness between H-M and other southern East Asians, suggesting a general southern origin of maternal lineages in the H-M populations. The estimated ages of the mtDNA lineages that are specific to H-M coincide with those based on archeological cultures that have been associated with H-M. Analysis of genetic distance and phylogenetic tree indicated some extent of difference between the Hmong and Mien populations. Together with the higher frequency of north-dominating lineages observed in the Hmong people, it is indicated that the Hmong populations had experienced more contact with the northern East Asians, consistent with historical evidence. Moreover, our data defined some new (sub-)haplogroups (A6, B4e, B4f, C5, F1a1, F1a1a, and R9c), which will direct further efforts to improve the phylogeny of East Asian mtDNAs.

Link

October 16, 2004

mtDNA and longevity

A new study examines the association between mtDNA and longevity, and discovers that three polymorphisms are associated with very old age; additionally, these polymorphisms occur in only some branches of the human mtDNA phylogeny:

A contingency table analysis of the frequencies of the very old subjects and the controls in subhaplogroups J2, D5, M7b, T2, U5 and N9a revealed a significant heterogeneity (χ2=17.604, df=5, P=0.0035). Subhaplogroups J2, D5 and M7b were more common among the very old, and the combined frequency of these subhaplogroups was significantly higher among the very old subjects than among the controls

European Journal of Human Genetics
advance online publication 13 October 2004; doi:10.1038/sj.ejhg.5201308

A combination of three common inherited mitochondrial DNA polymorphisms promotes longevity in Finnish and Japanese subjects

Anna-Kaisa Niemi et al.

Abstract

Mitochondrial DNA (mtDNA) coding region polymorphisms, as well as the 150T polymorphism in the noncoding region, have been associated with longevity. We have studied here the association of 150T with longevity further and assessed differences in this association between various mtDNA haplogroups. We analysed a sample of 321 very old subjects and 489 middle-aged controls from Finland and Japan. 150T was more frequent among the very old than among the controls in both the Finnish and Japanese subjects. Interestingly, the association was not similar in all haplogroups, and a stratified analysis revealed that two additional common polymorphisms, 489C and 10398G, modified the association between 150T and longevity. These findings suggest that longevity is partly determined by epistatic interactions involving these three mtDNA loci.

Link