UPDATE:
Two observations: it seems that West/East Eurasian Y chromosomes were sometimes associated with East/West mtDNA and vice versa, so these samples don't appear to be two disjoint West/East Eurasian populations, but some mixing took place. Also, the pigmentation estimates are mainly brown eyes (one blue-eyed individual) and black/dark brown hair (although both brown/dark blond were present).
The STRUCTURE results (which should be interpreted with great caution because of the small number of autosomal loci used) do suggest that this was a population that was more West than East Eurasian autosomally.
Forensic Science International: Genetics Received 2 January 2014; received in revised form 21 May 2014; accepted 25 May 2014. published online 04 June 2014.
Strong genetic admixture in the Altai at the Middle Bronze Age revealed by uniparental and ancestry informative markers
Clémence Hollard et al.
The Altai Mountains have been a long term boundary zone between the Eurasian Steppe populations and South and East Asian populations. To disentangle some of the historical population movements in this area, 14 ancient human specimens excavated in the westernmost part of the Mongolian Altai were studied. Thirteen of them were dated from the Middle to the End of the Bronze Age and one of them to the Eneolithic period. The environmental conditions encountered in this region led to the good preservation of DNA in the human remains. Therefore, a multi-markers approach was adopted for the genetic analysis of identity, ancestry and phenotype markers. Mitochondrial DNA analyses revealed that the ancient Altaians studied carried both Western (H, U, T) and Eastern (A, C, D) Eurasian lineages. In the same way, the patrilineal gene pool revealed the presence of different haplogroups (Q1a2a1-L54, R1a1a1b2-Z93 and C), probably marking different origins for the male paternal lineages. To go further in the search of the origin of these ancient specimens, phenotypical characters (ie: hair and eye colour) were determined. For this purpose, we adapted the HIrisPlex assay recently described to MALDI-TOF mass spectrometry. In addition, some ancestry informative markers were analyzed with this assay. The results revealed mixed phenotypes among this group confirming the probable admixed ancestry of the studied Altaian population at the Middle Bronze Age. The good results obtained from ancient DNA samples suggest that this approach might be relevant for forensic casework too.
Link
Showing posts with label Mongolia. Show all posts
Showing posts with label Mongolia. Show all posts
June 06, 2014
December 04, 2012
Tomb of Genghis Khan found?
Newsweek has a story on the purported finding of the tomb of Genghis Khan. An excerpt:
In any case, it would be great to read the headline "Genome sequence of Genghis Khan" in your Nature or Science news feed one fine evening a few years down the road, so let's keep our fingers crossed that it may yet happen.
PS: On an unrelated topic, I sometimes wonder why there has not been more work on "famous DNA"? This would provide an incredible way of involving the public in cutting edge science. It might also help historical research, and while the location of Genghis Khan's tomb is obscure, those of other famous potentates like Tamerlane, or the Ottoman Sultans, or a good number of European royals are not.
Of course, there may not be much scientific interest in many such persons, but if Einstein's brain continues to be the subject of reputable studies in good journals, why isn't Einstein's genome so studied? Or Newton's, Darwin's, Beethoven's, or any other intellectual giant's whose burial place is known? I'm not naive enough to think that such an approach would reveal a "genius gene" they all possessed, but still, it is not inconceivable that something of interest about their origins -if not their genetic predispositions- might turn up.
A multidisciplinary research project uniting scientists in America with Mongolian scholars and archeologists has the first compelling evidence of the location of Khan’s burial site and the necropolis of the Mongol imperial family on a mountain range in a remote area in northwestern Mongolia.
Among the discoveries by the team are the foundations of what appears to be a large structure from the 13th or 14th century, in an area that has historically been associated with this grave. Scientists have also found a wide range of artifacts that include arrowheads, porcelain, and a variety of building material.
“Everything lines up in a very compelling way,” says Albert Lin, National Geographic explorer and principal investigator of the project, in an exclusive interview with Newsweek.Whether this is the real thing or not, you gotta love that this has been made possible:
In a laboratory at the California Institute for Telecommunications and Information Technology at University of California, San Diego, Lin and his team combed through the massive volumes of ultrahigh-resolution satellite imagery and built 3-D reconstructions from radar scans in their search for clues to where Genghis Khan may be buried. As part of an unprecedented open-source project, thousands of online volunteers sifted through 85,000 high-resolution satellite images to identify any hidden structures or odd-seeming formations.Apparently there is concern of the local authorities about grave robbing, so it does not seem that the site will be excavated anytime soon. And, perhaps, the central position of Genghis Khan in modern Mongolian culture might make the disinternment of any human remains from the area a difficult proposition politically.
In any case, it would be great to read the headline "Genome sequence of Genghis Khan" in your Nature or Science news feed one fine evening a few years down the road, so let's keep our fingers crossed that it may yet happen.
PS: On an unrelated topic, I sometimes wonder why there has not been more work on "famous DNA"? This would provide an incredible way of involving the public in cutting edge science. It might also help historical research, and while the location of Genghis Khan's tomb is obscure, those of other famous potentates like Tamerlane, or the Ottoman Sultans, or a good number of European royals are not.
Of course, there may not be much scientific interest in many such persons, but if Einstein's brain continues to be the subject of reputable studies in good journals, why isn't Einstein's genome so studied? Or Newton's, Darwin's, Beethoven's, or any other intellectual giant's whose burial place is known? I'm not naive enough to think that such an approach would reveal a "genius gene" they all possessed, but still, it is not inconceivable that something of interest about their origins -if not their genetic predispositions- might turn up.
November 19, 2012
Mitochondrial DNA in Ancient Human Populations of Europe (der Sarkissian 2011)
Going over the 322 pages of thesis may take a while, but feel free to comment on it if you discover any interesting nuggets in the text. The following view of West/East Eurasian mtDNA surrounding the beginning of the Iron Age may be useful, and seems to parallel the results of a recent paper on Pazyryk mtDNA:
Of course, since the thesis was published we have new data from West Siberia/Ukraine that suggest that the penetration of east Eurasian lineages covered a great area to the west of the indicated region even prior to the Iron Age.
We can be fairly sure that "non-East Eurasian admixed" populations existed during the Bronze Age in three portions of the Eurasian landmass, separated by the Black and Caspian Seas: west of the Black Sea (Balkans/Central Europe); between Black and Caspian Seas (Caucasus) and east of the Caspian Sea (Kazakhstan and Turkmenistan). But how did these three regions contribute to the West Eurasian elements found on a west-east axis across Eurasia today? And, to what extent did the early east Eurasian elements that penetrated well into eastern Europe in the Neolithic-to-Bronze Age contribute to latter populations of the area vs. more recent expansions from the Altai and Central Asia during the Iron Age?
Here is a PCA of the pre-Iron Age individuals, compared with modern populations:
Both "Tarim" (TAR) and "Neolithic Lake Baikal" (LOK) appear well within east Eurasian variation. But, of the West Eurasian groups, Pitted Ware Complex (PWC), i.e., Neolithic hunter-gatherers from NE Europe and Bronze Age Altai (ALT-BA) appear clearly "northern Europeoid" across the 2nd PC, as do, to a lesser extent, C/N European Hunter-Gatherers (HG) and Kurgan burials from south Siberia (KUR-BA), but Bronze Age Kazakhstan (KAZ-BA) appear to be southern Europeoid, and, also, noticeably more "West Eurasian" than the others. Clearly, the West Eurasian elements were not homogeneous, with some of them (such as KAZ-BA) apparently derived from the southern Caucasoid zone -which largely did not experience east Eurasian admixture- and others from the northern Caucasoid zone that did.
The Rostov Scythian sample (in red) appears to belong to the southern Caucasoid zone (across PC2), but East Eurasian-shifted relative to modern Europeans and Bronze Age Kazakhstan.
Now, let's look at the Iron and post-Iron Age samples:
Egyin Gol (EG) from Mongolia and Sargat Siberians appear clearly as East Eurasians; Pazyryk Altai (ALT-IA), Iron Age Kazakhstan (KAZ-IA) and South Siberia Kurgan (KUR-IA) show decreasing East Eurasian influence; also notice the decidedly "southern" shift of the West Eurasian element among them.
This seems broadly consistent with the ideas of Molodin et al. about the gradual appearance (in their Siberian sample) of Caucasoid mtDNA types from the Neolithic to the Iron Age, with the early Neolithic U-dominated population finally receiving a full set of diverse West Eurasian lineages only during the Iron Age from the south.
It will certainly be very exciting when samples such as these can be tested for autosomal or Y-chromosome DNA, and I'm looking forward to the day when this can be done on a large scale.
Type: Thesis
Title: Mitochondrial DNA in ancient human populations of Europe.
Author: Dersarkissian, Clio Simone Irmgard
Issue Date: 2011
School/Discipline: School of Earth and Environmental Sciences
Abstract: The distribution of human genetic variability is the result of thousand years of human evolutionary and population history. Geographical variation in the nonrecombining maternally inherited mitochondrial DNA has been studied in a wide array of modern populations in order to reconstruct the migrations that have participated in the spread of our ancestors on the planet. However, population genetic processes (e.g., replacement, genetic drift) can significantly bias the reconstruction and timing of past migratory and demographic events inferred from the analysis of modern-day marker distributions. This can lead to erroneous interpretations of ancient human population history, a problem that potentially could be circumvented by the direct assessment of genetic diversity in ancient humans. Despite important methodological problems associated with contamination and post-mortem degradation of ancient DNA, mitochondrial data have been previously obtained for a few spatially and temporally diverse European populations. Mitochondrial data revealed additional levels of complexity in the population history of Europeans that had remained unknown from the study of modern populations. This justifies the relevance of broadening the sampling of ancient mitochondrial DNA in both time and space. This study aims at filling gaps in the knowledge of the genetic history of eastern Europeans and of European genetic outliers, the Saami and the Sardinians. This study presents a significant extension to the knowledge of past human mitochondrial diversity. Ancient remains temporally-sampled from three groups of European populations have been examined: north east Europeans (200 – 8,000 years before present; N = 76), Iron Age Scythians of the Rostov area, Russia (2,300 – 2,600 years before present; N = 16), Bronze Age individuals of central Sardinia, Italy (3,200 – 3,400 years before present; N = 16). The genetic characterisation of these populations principally relied on sequencing of the mitochondrial control region and typing of single nucleotide polymorphisms in the coding region. Changes in mitochondrial DNA structure were tracked through time by comparing ancient and modern populations of Eurasia. Analysis of haplogroup data included principal component analysis, multidimensional scaling, fixation index computation and genetic distance mapping. Haplotypic data were compared by haplotype sharing analysis, phylogenetic networks, Analysis of the Molecular Variance and coalescent simulations. The sequencing of a whole mitochondrial genome in a north east European Mesolithic individual lead to defining a new branch within the human mitochondrial tree. This work presents direct evidence that Mesolithic eastern Europeans belonged to the same Palaeolithic/Mesolithic genetic background as central and northern Europeans. It was also shown that prehistoric eastern Europeans were the recipients of multiple migrations from the East in prehistory that had not been previously detected and/or timed on the basis of modern mtDNA data. Ancient DNA also provided insights in the genetic history of European genetic outliers; the Saami, whose ancestral population still remain unidentified, and the Sardinians, whose genetic differentiation is proposed to be the result of mating isolation since at least the Bronze Age. This study demonstrates the power of aDNA to reveal previously unknown population processes in the genetic history of modern Eurasians.
Link
Of course, since the thesis was published we have new data from West Siberia/Ukraine that suggest that the penetration of east Eurasian lineages covered a great area to the west of the indicated region even prior to the Iron Age.
We can be fairly sure that "non-East Eurasian admixed" populations existed during the Bronze Age in three portions of the Eurasian landmass, separated by the Black and Caspian Seas: west of the Black Sea (Balkans/Central Europe); between Black and Caspian Seas (Caucasus) and east of the Caspian Sea (Kazakhstan and Turkmenistan). But how did these three regions contribute to the West Eurasian elements found on a west-east axis across Eurasia today? And, to what extent did the early east Eurasian elements that penetrated well into eastern Europe in the Neolithic-to-Bronze Age contribute to latter populations of the area vs. more recent expansions from the Altai and Central Asia during the Iron Age?
Here is a PCA of the pre-Iron Age individuals, compared with modern populations:
Both "Tarim" (TAR) and "Neolithic Lake Baikal" (LOK) appear well within east Eurasian variation. But, of the West Eurasian groups, Pitted Ware Complex (PWC), i.e., Neolithic hunter-gatherers from NE Europe and Bronze Age Altai (ALT-BA) appear clearly "northern Europeoid" across the 2nd PC, as do, to a lesser extent, C/N European Hunter-Gatherers (HG) and Kurgan burials from south Siberia (KUR-BA), but Bronze Age Kazakhstan (KAZ-BA) appear to be southern Europeoid, and, also, noticeably more "West Eurasian" than the others. Clearly, the West Eurasian elements were not homogeneous, with some of them (such as KAZ-BA) apparently derived from the southern Caucasoid zone -which largely did not experience east Eurasian admixture- and others from the northern Caucasoid zone that did.
The Rostov Scythian sample (in red) appears to belong to the southern Caucasoid zone (across PC2), but East Eurasian-shifted relative to modern Europeans and Bronze Age Kazakhstan.
Now, let's look at the Iron and post-Iron Age samples:
Egyin Gol (EG) from Mongolia and Sargat Siberians appear clearly as East Eurasians; Pazyryk Altai (ALT-IA), Iron Age Kazakhstan (KAZ-IA) and South Siberia Kurgan (KUR-IA) show decreasing East Eurasian influence; also notice the decidedly "southern" shift of the West Eurasian element among them.
This seems broadly consistent with the ideas of Molodin et al. about the gradual appearance (in their Siberian sample) of Caucasoid mtDNA types from the Neolithic to the Iron Age, with the early Neolithic U-dominated population finally receiving a full set of diverse West Eurasian lineages only during the Iron Age from the south.
It will certainly be very exciting when samples such as these can be tested for autosomal or Y-chromosome DNA, and I'm looking forward to the day when this can be done on a large scale.
Type: Thesis
Title: Mitochondrial DNA in ancient human populations of Europe.
Author: Dersarkissian, Clio Simone Irmgard
Issue Date: 2011
School/Discipline: School of Earth and Environmental Sciences
Abstract: The distribution of human genetic variability is the result of thousand years of human evolutionary and population history. Geographical variation in the nonrecombining maternally inherited mitochondrial DNA has been studied in a wide array of modern populations in order to reconstruct the migrations that have participated in the spread of our ancestors on the planet. However, population genetic processes (e.g., replacement, genetic drift) can significantly bias the reconstruction and timing of past migratory and demographic events inferred from the analysis of modern-day marker distributions. This can lead to erroneous interpretations of ancient human population history, a problem that potentially could be circumvented by the direct assessment of genetic diversity in ancient humans. Despite important methodological problems associated with contamination and post-mortem degradation of ancient DNA, mitochondrial data have been previously obtained for a few spatially and temporally diverse European populations. Mitochondrial data revealed additional levels of complexity in the population history of Europeans that had remained unknown from the study of modern populations. This justifies the relevance of broadening the sampling of ancient mitochondrial DNA in both time and space. This study aims at filling gaps in the knowledge of the genetic history of eastern Europeans and of European genetic outliers, the Saami and the Sardinians. This study presents a significant extension to the knowledge of past human mitochondrial diversity. Ancient remains temporally-sampled from three groups of European populations have been examined: north east Europeans (200 – 8,000 years before present; N = 76), Iron Age Scythians of the Rostov area, Russia (2,300 – 2,600 years before present; N = 16), Bronze Age individuals of central Sardinia, Italy (3,200 – 3,400 years before present; N = 16). The genetic characterisation of these populations principally relied on sequencing of the mitochondrial control region and typing of single nucleotide polymorphisms in the coding region. Changes in mitochondrial DNA structure were tracked through time by comparing ancient and modern populations of Eurasia. Analysis of haplogroup data included principal component analysis, multidimensional scaling, fixation index computation and genetic distance mapping. Haplotypic data were compared by haplotype sharing analysis, phylogenetic networks, Analysis of the Molecular Variance and coalescent simulations. The sequencing of a whole mitochondrial genome in a north east European Mesolithic individual lead to defining a new branch within the human mitochondrial tree. This work presents direct evidence that Mesolithic eastern Europeans belonged to the same Palaeolithic/Mesolithic genetic background as central and northern Europeans. It was also shown that prehistoric eastern Europeans were the recipients of multiple migrations from the East in prehistory that had not been previously detected and/or timed on the basis of modern mtDNA data. Ancient DNA also provided insights in the genetic history of European genetic outliers; the Saami, whose ancestral population still remain unidentified, and the Sardinians, whose genetic differentiation is proposed to be the result of mating isolation since at least the Bronze Age. This study demonstrates the power of aDNA to reveal previously unknown population processes in the genetic history of modern Eurasians.
Link
July 16, 2012
5,300-year-old Mongolian statue
ARCHAEOLOGISTS of the Chinese Academy of Social Sciences have finished reconstructing a 5,300-year-old pottery statue from fragments unearthed in North China’s Inner Mongolia Autonomous Region, it was announced Saturday.
The debris of the pottery statue were found at the Xinglonggou relics site in Aohan Banner of Chifeng City in May.
Experts began to excavate the debris June 30, and finished restoring the statue on Friday, said Liu Guoxiang, leader of the first archaeology team of Inner Mongolia.
The restored seated figure is 55cm high with bulging eyes, a high nose and vivid facial expression. It was pieced together from 65 fragments.
“The statue may be of a wizard or leader in the famous Hongshan Culture period (a Neolithic culture dating back 5,000-6,000 years),” added Liu.
May 12, 2012
4,000 year old rock art from Mongolia
4000-year-old rock art discovered in Mongolia
Eighteen rock art sites dating back over 4,000 years have been discovered by archaeologists in northern China's Inner Mongolia autonomous region. The prehistoric art was discovered in the Yinshan Mountains in Urad Middle Banner (an administration division of the Inner Mongolia Autonomous Region), said Liu Binjie, head of the Cultural Relics Bureau of Urad Middle Banner.Can a Chinese reader dig up some pictures of these faces? I've seen a few stories about these discoveries in various outlets, but only a very small picture as of yet. This has some information on the Rock Painting of Yinshan Mountains. Also: The Rock Art of Inner Mongolia & Ningxia (China).
...
Liu said that carvings of faces found on Yinshan Mountains cliffs are similar to those in the Helan Mountains, located on the boundary between Ningxia and Inner Mongolia. They are also similar to those in eastern Russia, showing close connections with ancient peoples' migration patterns, showing similar worship ceremonies.
July 07, 2010
Genetic structure of cattle in Eurasia
The mixed (east-west) affiliation of Mongolian cattle parallels the mixed affiliation of Mongolians themselves. The Caucasoids do not appear to have penetrated east of Lake Baikal, and some Caucasoid-influenced populations that live to the east of that frontier are thought to have originated there. Thus, the evidence from cattle complements that from physical anthropology and human population genetics to fix the border between the Western and Eastern Eurasian spheres of influence.
Anim Sci J. 2010 Jun 1;81(3):281-9.
Genetic diversity and structure in Bos taurus and Bos indicus populations analyzed by SNP markers.
Lin BZ, Sasazaki S, Mannen H.
Abstract
The purpose of this study was to assess genetic diversity, phylogenetic relationship and population structure among nine Eurasian cattle populations using 58 single nucleotide polymorphism (SNP) markers. The calculated distribution of minor allele frequencies and heterozygosities suggested that the genetic diversity of Bos indicus populations was lower than that of Bos taurus populations. Phylogenetic analyses revealed the main divergence between the Bos taurus and Bos indicus populations, and subsequently between Asian and European populations. By principal components analysis, the Bos taurus and Bos indicus populations were clearly distinguished with PC1 (61.1%); however, six Bos taurus populations clustered loosely and the partial separation between European and Asian groups was observed by PC2 (12.5%). The structure analysis was performed using the STRUCTURE program. Distinct separation between Bos taurus and Bos indicus was shown at K = 2, and that between European and Asian populations at K = 3. At K = 4, 5 and 6, Mongolian population showed an admixture pattern with different ancestry of Asian and European cattle. At K = 7, all Bos taurus populations showed each cluster with little proportion of admixture. In conclusion, 58 SNP markers in this study could sufficiently estimate the genetic diversity, relationship and structure for nine Eurasian cattle populations, especially by analyses of principal components and STRUCTURE.
Link
Anim Sci J. 2010 Jun 1;81(3):281-9.
Genetic diversity and structure in Bos taurus and Bos indicus populations analyzed by SNP markers.
Lin BZ, Sasazaki S, Mannen H.
Abstract
The purpose of this study was to assess genetic diversity, phylogenetic relationship and population structure among nine Eurasian cattle populations using 58 single nucleotide polymorphism (SNP) markers. The calculated distribution of minor allele frequencies and heterozygosities suggested that the genetic diversity of Bos indicus populations was lower than that of Bos taurus populations. Phylogenetic analyses revealed the main divergence between the Bos taurus and Bos indicus populations, and subsequently between Asian and European populations. By principal components analysis, the Bos taurus and Bos indicus populations were clearly distinguished with PC1 (61.1%); however, six Bos taurus populations clustered loosely and the partial separation between European and Asian groups was observed by PC2 (12.5%). The structure analysis was performed using the STRUCTURE program. Distinct separation between Bos taurus and Bos indicus was shown at K = 2, and that between European and Asian populations at K = 3. At K = 4, 5 and 6, Mongolian population showed an admixture pattern with different ancestry of Asian and European cattle. At K = 7, all Bos taurus populations showed each cluster with little proportion of admixture. In conclusion, 58 SNP markers in this study could sufficiently estimate the genetic diversity, relationship and structure for nine Eurasian cattle populations, especially by analyses of principal components and STRUCTURE.
Link
May 29, 2010
Comparison between morphological and genetic data for Egyin Gol Mongolians
I had first blogged about Egyin Gol in 2003, that paper is freely available here. From the current paper:
American Journal of Physical Anthropology doi:10.1002/ajpa.21322
Comparison between morphological and genetic data to estimate biological relationship: The case of the Egyin Gol necropolis (Mongolia)
François-X. Ricaut et al.
Osseous and dental nonmetric (discrete) traits have long been used to assess population variability and affinity in anthropological and archaeological contexts. However, the full extent to which nonmetric traits can reliably be used as a proxy for genetic data when assessing close or familial relationships is currently poorly understood. This study represents the unique opportunity to directly compare genetic and nonmetric data for the same individuals excavated from the Egyin Gol necropolis, Mongolia. These data were analyzed to consider the general efficacy of nonmetric traits for detecting familial groupings in the absence of available genetic data. The results showed that the Egyin Gol population is quite homogenous both metrically and genetically confirming a previous suggestion that the same people occupied the necropolis throughout the five centuries of its existence. Kinship analysis detected the presence of potential family burials in the necropolis. Moreover, individuals buried in one sector of the necropolis were differentiated from other sectors on the basis of nonmetric data. This separation is likely due to an outside Turkish influence in the paternal line, as indicated by the results of Y-chromosome analysis. Affinity matrices based on nonmetric and genetic data were correlated demonstrating the potential of nonmetric traits for detecting relationships in the absence of genetic data. However, the strengths of the correlations were relatively low, cautioning against the use of nonmetric traits when the resolution of the familial relationships is low. Am J Phys Anthropol 2010. © 2010 Wiley-Liss, Inc.
Link
The Egyin Gol necropolis is located in the Egyin Gol Valley (northern Mongolia), near the Egyin Gol River, close to its confluence with the Selenge, a main tributary of Lake Baikal (see Fig. 1). This site has been the subject of a French-Mongolian interdisciplinary research project from 1997 to 1999, which allowed the excavation of 84 graves containing skeletal remains of 99 individuals buried from the third century B.C. to the second century A.D. The graves were organized in three main sectors (A, B, and C) that, based on AMS carbon-14 dating of human bones, progressively expanded from south to north (i.e., Sector A is the oldest followed by Sector B and Sector C). The development of Sector C corresponds to the end of the necropolis and may reflect a Turkish influence on the Xiongnu tribe (Keyser-Tracqui et al., 2003).and:
The results showed, however, that individuals buried in sector C represent a specific kin group clearly differentiated from the rest of the necropolis based on nonmetric
data (Table 4), and confirmed by the genetic data. This might be explained on the basis that these individuals are suggested to be of Turkish origin, based on their shared single paternal lineage, unique in the necropolis and affiliated with Turkish populations (Keyser-Tracqui et al., 2003). However, the sector C individuals share the same maternal lineages with individuals buried in sectors A and B, which could explain the global homogeneity of the population as a whole. The particular characteristics of the sample from sector C suggests a possible shift in the population demographics, caused by the emergence of a Turkish component in the Xiongnu population at the end of the necropolis use and at the end of the first steppe empire led by the Xiongnu. The fact that this particular subgroup of the population buried in sector C was detected by nonmetric traits analysis demonstrated that nonmetric traits are an efficient tool when analyzing population microevolution.
The Y chromosome results are found in Table 2 of the original paper.
I ran the Y-STR profile of the shared patrilineage over the haplogroup predictor, but I don't get a clear estimate for the Y-STR profile (grave 46 in Table 2).
A YHRD search gave the following results:
The high frequency in Kazakhs and Yakuts, with a little spillover in both China and eastern Europe is certainly consistent with a Turkic origin of this haplotype.

Finally, I gave it a try at ysearch, getting a match with a Pole and a 1-step match with a Czech, both of which are listed as C3-tested.
So, there you have it, archaeology, non-metric data, Y-chromosomes, and a little use of online tools gives us a first glimpse on what may have been a group of ancient Turkic individuals. Of course here are theories-a-plenty about what language the Xiongnu originally spoke, so it would be premature to arrive at any firm conclusions.
Interestingly, C3 is also present in a different 2,000-year old Xiongnu individual from NE Mongolia from the Duurlig Nars site, but an earlier group of Xiongnu-related individuals from China (Pengyang) belonged to haplogroup Q.
American Journal of Physical Anthropology doi:10.1002/ajpa.21322
Comparison between morphological and genetic data to estimate biological relationship: The case of the Egyin Gol necropolis (Mongolia)
François-X. Ricaut et al.
Osseous and dental nonmetric (discrete) traits have long been used to assess population variability and affinity in anthropological and archaeological contexts. However, the full extent to which nonmetric traits can reliably be used as a proxy for genetic data when assessing close or familial relationships is currently poorly understood. This study represents the unique opportunity to directly compare genetic and nonmetric data for the same individuals excavated from the Egyin Gol necropolis, Mongolia. These data were analyzed to consider the general efficacy of nonmetric traits for detecting familial groupings in the absence of available genetic data. The results showed that the Egyin Gol population is quite homogenous both metrically and genetically confirming a previous suggestion that the same people occupied the necropolis throughout the five centuries of its existence. Kinship analysis detected the presence of potential family burials in the necropolis. Moreover, individuals buried in one sector of the necropolis were differentiated from other sectors on the basis of nonmetric data. This separation is likely due to an outside Turkish influence in the paternal line, as indicated by the results of Y-chromosome analysis. Affinity matrices based on nonmetric and genetic data were correlated demonstrating the potential of nonmetric traits for detecting relationships in the absence of genetic data. However, the strengths of the correlations were relatively low, cautioning against the use of nonmetric traits when the resolution of the familial relationships is low. Am J Phys Anthropol 2010. © 2010 Wiley-Liss, Inc.
Link
May 10, 2010
Origin and dispersal of Y chromosome haplogroup C (Zhong et al. 2010)
A beautiful new paper has appeared that tackles the distribution and substructure of Y chromosome haplogroup C, a widely dispersed lineage that binds Asia, Oceania, and the Americas. This will be invaluable as a resource for students of East Eurasian anthropology and genetics. My only problem with the paper is in its use of the evolutionary mutation rate that I have criticized elsewhere.
From the paper:
Hg C is prevalent in various geographical areas (Figures 1 and 2), including Australia (65.74%), Polynesia (40.52%), Heilongjiang of northeastern China (Manchu, 44.00%), Inner Mongolia (Mongolian, 52.17%; Oroqen, 61.29%), Xinjiang of northwestern China (Hazak, 75.47%), Outer Mongolia (52.80%) and northeastern Siberia (37.41%). Hg C is also present in other regions, extending longitudinally from Sardinia in Southern Europe all the way to Northern Colombia, and latitudinally from Yakutia of Northern Siberia and Alaska of Northern America to India, Indonesia and Polynesia, but absent in Africa.On the structure of haplogroup C:
As shown in Figure 1, most of the subhaplogroups of Hg C have a geographically pronounced distribution. Hg C6, which is defined by a recently identified marker, was not detected in our samples. Hg C1 and C4 are completely restricted to Japan and Australia, respectively, and not detected in the other samples from East Asia and Southeast Asia. Hg C5 occurs in India and its neighboring regions Pakistan and Nepal. In mainland East Asia, four Hg C5 individuals were detected, including two in Xibe, one in Uygur and one in Shanxi Han. Although the dispersal of Hg C2 is relatively wide, its distribution remains limited to Oceania and its neighboring regions, except Australia. In our samples, only three Hg C2 individuals were observed in Eastern Indonesia, which is consistent with previous reports. Hg C3 is the most widespread subhaplogroup, which was detected in Central Asia, South Asia, Southeast Asia, East Asia, Siberia and the Americas, but absent in Oceania. Different subhaplogroups of Hg C that do not overlap between the regions suggest that these individuals have undergone long-time isolation. As these subhaplogroups have a common origin by sharing the M130-derived allele, their geographical distributions enable us to infer the prehistoric migration routes of this lineage.The MDS plot is quite instructive. Notice the duality of Japanese C chromosomes, which parallels what we know about the dual origins of the Japanese. It would be instructive to test European haplogroup C outliers to see where they fall within haplogroup C diversity.
The C3 MDS is quite instructive, and shows quite well the distribution of C3 diversity in Chinese ethnic populations.
Off the top of my head, I detect a top-right Mongolian-Manchu-Tibetan quadrant (note that Mongolians and Tibetans are also linked by the rare haplogroup D) and a left Central/Southern Chinese ethnic quadrant. Notice the closeness of Hani to Yi, which may validate the former's oral traditions.
Finally, getting back to the controversial issue of Y-chromosome age estimation, here are the dates proposed by the authors for the age of STR variation within haplogroups and their divergence times. In my opinion these are overestimates due to the use of the evolutionary rate.
A case in point is haplogroup C3b-P39; according to the authors' date, this ought to be related to the early arrival of the ancestors of Amerindians, but haplogroup C in the Americans has a strong relationship with Na-Dene speakers such as Athapaskans, and it seems to me that a late spread of this haplogroup is more consistent with its limited geographical distribution and strong linguistic associations.
Related: the Southern origin of O3
Journal of Human Genetics doi: 10.1038/jhg.2010.40
Global distribution of Y-chromosome haplogroup C reveals the prehistoric migration routes of African exodus and early settlement in East Asia
Hua Zhong et al.
The regional distribution of an ancient Y-chromosome haplogroup C-M130 (Hg C) in Asia provides an ideal tool of dissecting prehistoric migration events. We identified 465 Hg C individuals out of 4284 males from 140 East and Southeast Asian populations. We genotyped these Hg C individuals using 12 Y-chromosome biallelic markers and 8 commonly used Y-short tandem repeats (Y-STRs), and performed phylogeographic analysis in combination with the published data. The results show that most of the Hg C subhaplogroups have distinct geographical distribution and have undergone long-time isolation, although Hg C individuals are distributed widely across Eurasia. Furthermore, a general south-to-north and east-to-west cline of Y-STR diversity is observed with the highest diversity in Southeast Asia. The phylogeographic distribution pattern of Hg C supports a single coastal ‘Out-of-Africa’ route by way of the Indian subcontinent, which eventually led to the early settlement of modern humans in mainland Southeast Asia. The northward expansion of Hg C in East Asia started ~40 thousand of years ago (KYA) along the coastline of mainland China and reached Siberia ~15 KYA and finally made its way to the Americas.
Link
Journal of Human Genetics doi: 10.1038/jhg.2010.40
Global distribution of Y-chromosome haplogroup C reveals the prehistoric migration routes of African exodus and early settlement in East Asia
Hua Zhong et al.
The regional distribution of an ancient Y-chromosome haplogroup C-M130 (Hg C) in Asia provides an ideal tool of dissecting prehistoric migration events. We identified 465 Hg C individuals out of 4284 males from 140 East and Southeast Asian populations. We genotyped these Hg C individuals using 12 Y-chromosome biallelic markers and 8 commonly used Y-short tandem repeats (Y-STRs), and performed phylogeographic analysis in combination with the published data. The results show that most of the Hg C subhaplogroups have distinct geographical distribution and have undergone long-time isolation, although Hg C individuals are distributed widely across Eurasia. Furthermore, a general south-to-north and east-to-west cline of Y-STR diversity is observed with the highest diversity in Southeast Asia. The phylogeographic distribution pattern of Hg C supports a single coastal ‘Out-of-Africa’ route by way of the Indian subcontinent, which eventually led to the early settlement of modern humans in mainland Southeast Asia. The northward expansion of Hg C in East Asia started ~40 thousand of years ago (KYA) along the coastline of mainland China and reached Siberia ~15 KYA and finally made its way to the Americas.
Link
January 21, 2010
R1a1/U2e male in 2,000-year old Mongolian Xiongnu
Related:
A western Eurasian male is found in 2000-year-old elite Xiongnu cemetery in Northeast Mongolia
Kijeong Kim et al.
Abstract
We analyzed mitochondrial DNA (mtDNA), Y-chromosome single nucleotide polymorphisms (Y-SNP), and autosomal short tandem repeats (STR) of three skeletons found in a 2,000-year-old Xiongnu elite cemetery in Duurlig Nars of Northeast Mongolia. This study is one of the first reports of the detailed genetic analysis of ancient human remains using the three types of genetic markers. The DNA analyses revealed that one subject was an ancient male skeleton with maternal U2e1 and paternal R1a1 haplogroups. This is the first genetic evidence that a male of distinctive Indo-European lineages (R1a1) was present in the Xiongnu of Mongolia. This might indicate an Indo-European migration into Northeast Asia 2,000 years ago. Other specimens are a female with mtDNA haplogroup D4 and a male with Y-SNP haplogroup C3 and mtDNA haplogroup D4. Those haplogroups are common in Northeast Asia. There was no close kinship among them. The genetic evidence of U2e1 and R1a1 may help to clarify the migration patterns of Indo-Europeans and ancient East-West contacts of the Xiongnu Empire. Artifacts in the tombs suggested that the Xiongnu had a system of the social stratification. The West Eurasian male might show the racial tolerance of the Xiongnu Empire and some insight into the Xiongnu society.
Link
- Some mtDNA links between Europe and Asia
- 30,000 year old mtDNA haplogroup U2 from Kostenki
- More on prehistoric South Siberians (Keyser et al. 2009)
A western Eurasian male is found in 2000-year-old elite Xiongnu cemetery in Northeast Mongolia
Kijeong Kim et al.
Abstract
We analyzed mitochondrial DNA (mtDNA), Y-chromosome single nucleotide polymorphisms (Y-SNP), and autosomal short tandem repeats (STR) of three skeletons found in a 2,000-year-old Xiongnu elite cemetery in Duurlig Nars of Northeast Mongolia. This study is one of the first reports of the detailed genetic analysis of ancient human remains using the three types of genetic markers. The DNA analyses revealed that one subject was an ancient male skeleton with maternal U2e1 and paternal R1a1 haplogroups. This is the first genetic evidence that a male of distinctive Indo-European lineages (R1a1) was present in the Xiongnu of Mongolia. This might indicate an Indo-European migration into Northeast Asia 2,000 years ago. Other specimens are a female with mtDNA haplogroup D4 and a male with Y-SNP haplogroup C3 and mtDNA haplogroup D4. Those haplogroups are common in Northeast Asia. There was no close kinship among them. The genetic evidence of U2e1 and R1a1 may help to clarify the migration patterns of Indo-Europeans and ancient East-West contacts of the Xiongnu Empire. Artifacts in the tombs suggested that the Xiongnu had a system of the social stratification. The West Eurasian male might show the racial tolerance of the Xiongnu Empire and some insight into the Xiongnu society.
Link
November 25, 2008
Origin of ancient Chinese horses from ancient DNA
From the paper:
Related: Wikipedia article on Przewalski's horse. Also, Lippold & Hofreiter from ISBA3:
Journal of Archaeological Science doi: 10.1016/j.jas.2008.11.006
Ancient DNA provides new insights into the origin of the Chinese
domestic horse
Dawei Cai et al.
Abstract
Domestic horses played a pivotal role in ancient China, but their exact origin remains controversial. To investigate the origin of Chinese domestic horses, we analyzed mitochondrial DNA (mtDNA) from 35 horse remains, aged between 4000 and 2000 years, excavated from nine archaeological sites in northern China. The Chinese ancient horses exhibited high matrilineal diversity, falling into all the seven haplogroups (A-G) observed in modern horses. These results suggest that several maternal lines were introduced into the gene pool of Chinese horses in the past. Haplogroup A and F were more prevalent in ancient horses than the other haplogroups. Interestingly, only haplogroups A and F were present in the samples older than 4000 years, while the more recent horses (between 2000 and 3000 years BP) fell into all seven haplogroups. Comparison with DNA data of present-day horses suggests haplogroup F is like to be an ancient haplogroup of East Asian origin. These analyses also suggest that the origin of Chinese domestic horses is complex, and external mtDNA input occurred after initial domestication. Our results indicate that the Chinese ancient horses are more related to the modern Mongolian horses. Lastly, our results cannot support cannot support the previous hypothesis that early Chinese domestic horses were derived from the Przewalski horse.
Link
To shed light on the origin of the diverse haplogroups, we studied the distribution of the seven haplogroups in 17 modern populations, and showed that only F and D have a significant geographical pattern (Table 3 and Fig.2). Haplogroup F is prevalent in East Eurasian populations and its frequencies declines from east to west, consistent with the results of previous studies (McGahern et al., 2006). Based on our findings in Chinese horses older than 4000 years, we propose that haplogroup F is an ancient haplogroup of East Asian origin.
...
we suggest that the origin of Chinese domestic horses is more complex than previously thought, and that both indigenous breeds and introduced maternal lineages were involved in the process of domestication. Thus, our data fail to support either of the two previous hypotheses on the domestication of horses in China.
...
Phylogenetic analysis revealed that the Przewalski fell into cluster A2, distinct
from Chinese ancient horses and modern horses. Genetic distance analysis indicated that the Przewalski were far from the ancient horses, suggesting that the Przewalski horse and the domestic horse should be considered sister taxa with a common ancestor, and that the Przewalski horse is not the wild ancestor to the Chinese domestic horse. However, this conclusion should be viewed with caution, as the Przewalski horse underwent a severe genetic bottleneck: all present individuals descend from only 13 survivors, with only four maternal lineages (Volf & Kus, 1991).
Related: Wikipedia article on Przewalski's horse. Also, Lippold & Hofreiter from ISBA3:
We sequence 600 bp of mtDNA from the mitochondrial D-Loop of different individuals obtained from different locations. Our initial results indicate tremendous genetic diversity, but no phylogeographic pattern within this marker. The genetic distribution of these ancient samples also falls within the broad diversity range apparent in recent horses.It would be interesting to see more ancient DNA results for wild and domestic horses, especially from the Eurasiatic steppes where they are believed to have undergone domestication.
Journal of Archaeological Science doi: 10.1016/j.jas.2008.11.006
Ancient DNA provides new insights into the origin of the Chinese
domestic horse
Dawei Cai et al.
Abstract
Domestic horses played a pivotal role in ancient China, but their exact origin remains controversial. To investigate the origin of Chinese domestic horses, we analyzed mitochondrial DNA (mtDNA) from 35 horse remains, aged between 4000 and 2000 years, excavated from nine archaeological sites in northern China. The Chinese ancient horses exhibited high matrilineal diversity, falling into all the seven haplogroups (A-G) observed in modern horses. These results suggest that several maternal lines were introduced into the gene pool of Chinese horses in the past. Haplogroup A and F were more prevalent in ancient horses than the other haplogroups. Interestingly, only haplogroups A and F were present in the samples older than 4000 years, while the more recent horses (between 2000 and 3000 years BP) fell into all seven haplogroups. Comparison with DNA data of present-day horses suggests haplogroup F is like to be an ancient haplogroup of East Asian origin. These analyses also suggest that the origin of Chinese domestic horses is complex, and external mtDNA input occurred after initial domestication. Our results indicate that the Chinese ancient horses are more related to the modern Mongolian horses. Lastly, our results cannot support cannot support the previous hypothesis that early Chinese domestic horses were derived from the Przewalski horse.
Link
September 08, 2008
mtDNA of Mongolians
While I agree that the Mongol Empire played a major role in the admixture of Caucasoids and Mongoloids, we have very clear evidence now that the two races had been mixing in Central Asia long before that time.
J Hum Genet.
Genetic imprint of the Mongol: signal from phylogeographic analysis of mitochondrial DNA
Cheng B, Tang W, He L, Dong Y, Lu J, Lei Y, Yu H, Zhang J, Xiao C.
Abstract
Mitochondrial deoxyribonucleic acid (DNA) from 201 unrelated Mongolian individuals in the three different regions was analyzed. The Mongolians took the dominant East Asian-specific haplogroups, and some European-prevalent haplogroups were detected. The East Asians-specific haplogroups distributed from east to west in decreasing frequencies, and the European-specific haplogroups distributed conversely. These genetic data suggest that the Mongolian empire played an important role in the maternal genetic admixture across Mongolians and even Central Asian populations, whereas the Silk Road might have contributed little in the admixture between the East Asians and the Europeans.
Link
J Hum Genet.
Genetic imprint of the Mongol: signal from phylogeographic analysis of mitochondrial DNA
Cheng B, Tang W, He L, Dong Y, Lu J, Lei Y, Yu H, Zhang J, Xiao C.
Abstract
Mitochondrial deoxyribonucleic acid (DNA) from 201 unrelated Mongolian individuals in the three different regions was analyzed. The Mongolians took the dominant East Asian-specific haplogroups, and some European-prevalent haplogroups were detected. The East Asians-specific haplogroups distributed from east to west in decreasing frequencies, and the European-specific haplogroups distributed conversely. These genetic data suggest that the Mongolian empire played an important role in the maternal genetic admixture across Mongolians and even Central Asian populations, whereas the Silk Road might have contributed little in the admixture between the East Asians and the Europeans.
Link
July 28, 2008
Ancient mtDNA from Inner Mongolia
Three individuals with mixed Caucasoid-Mongoloid affinities were an adult female (haplogroup C), 25yo male (haplogroup M), and 25-30yo male (haplogroup A). From the paper:
Ancient DNA analysis of human remains from the upper capital city of Kublai Khan
Yuqin Fu et al.
Abstract
Analysis of DNA from human archaeological remains is a powerful tool for reconstructing ancient events in human history. To help understand the origin of the inhabitants of Kublai Khan's Upper Capital in Inner Mongolia, we analyzed mitochondrial DNA (mtDNA) polymorphisms in 21 ancient individuals buried in the Zhenzishan cemetery of the Upper Capital. MtDNA coding and noncoding region polymorphisms identified in the ancient individuals were characteristic of the Asian mtDNA haplogroups A, B, N9a, C, D, Z, M7b, and M. Phylogenetic analysis of the ancient mtDNA sequences, and comparison with extant reference populations, revealed that the maternal lineages of the population buried in the Zhenzishan cemetery are of Asian origin and typical of present-day Han Chinese, despite the presence of typical European morphological features in several of the skeletons.
Link
All haplogroups were Asian-specific, the haplotypes of 10 individuals are shared by modern Han Chinese, and the one-step neighbors to another 7 individuals also mainly distribute in modern Han Chinese (Yao et al., 2002). The phylogenetic analysis of the ancient population and extant Eurasian populations showed that the ancient population most closely related to the Han Chinese, especially the northern Han.American Journal of Physical Anthropology doi: 10.1002/ajpa.20894
Ancient DNA analysis of human remains from the upper capital city of Kublai Khan
Yuqin Fu et al.
Abstract
Analysis of DNA from human archaeological remains is a powerful tool for reconstructing ancient events in human history. To help understand the origin of the inhabitants of Kublai Khan's Upper Capital in Inner Mongolia, we analyzed mitochondrial DNA (mtDNA) polymorphisms in 21 ancient individuals buried in the Zhenzishan cemetery of the Upper Capital. MtDNA coding and noncoding region polymorphisms identified in the ancient individuals were characteristic of the Asian mtDNA haplogroups A, B, N9a, C, D, Z, M7b, and M. Phylogenetic analysis of the ancient mtDNA sequences, and comparison with extant reference populations, revealed that the maternal lineages of the population buried in the Zhenzishan cemetery are of Asian origin and typical of present-day Han Chinese, despite the presence of typical European morphological features in several of the skeletons.
Link
May 07, 2008
SNP tests from ancient Egyin Gol Mongolians
From the doctoral thesis of Elizabet Petkovski, "Polymorphismes ponctuels de séquence
et identification génétique",
She is referring to Keyser-Tarcqui et al. (2003).
et identification génétique",

March 07, 2008
mtDNA of Altaian Kazakhs from Russia
From the paper:
American Journal of Physical Anthropology (early view)
Genetic variation in the enigmatic Altaian Kazakhs of South-Central Russia: Insights into Turkic population history
Omer Gokcumen et al.
The Altaian Kazakhs, a Turkic speaking group, now reside in the southern part of the Altai Republic in south-central Russia. According to historical accounts, they are one of several ethnic and geographical subdivisions of the Kazakh nomadic group that migrated from China and Western Mongolia into the Altai region during the 19th Century. However, their population history of the Altaian Kazakhs and the genetic relationships with other Kazakh groups and neighboring Turkic-speaking populations is not well understood. To begin elucidating their genetic history, we analyzed the mtDNAs from 237 Altaian Kazakhs through a combination of SNP analysis and HVS1 sequencing. This analysis revealed that their mtDNA gene pool was comprised of roughly equal proportions of East (A-G, M7, M13, Y and Z) and West (H, HV, pre-HV, R, IK, JT, X, U) Eurasian haplogroups, with the haplotypic diversity within haplogroups C, D, H, and U being particularly high. This pattern of diversity likely reflects the complex interactions of the Kazakhs with other Turkic groups, Mongolians, and indigenous Altaians. Overall, these data have important implications for Kazakh population history, the genetic prehistory of the Altai-Sayan region, and the phylogeography of major mitochondrial lineages in Eurasia.
Link
In this study, we also find that all Turkic and Mongolic groups possess a common set of maternal haplogroups (C, D, G2a, H), and a minimal number of haplotypes from these lineages at appreciable frequencies. However, the overall patterns of haplotype sharing amongst these groups vary considerably. This finding is not necessarily incompatible with the cultural diffusion model per se, but implies that present day Turkic-Mongolic ethnic groups emerged from a common mtDNA pool that was widely distributed in Central and East Asia.This suggests that the movements of Turkic-Mongolic people did not consist only of males but also had a female component to them. Also of interest from the paper:
Haplogroup N1a was also present in the Altaian Kazakhs. Seeing as how there were no occurrences of this lineage in other Kazakh populations or neighboring populations (Kolman et al., 1996; Comas et al., 1998; Yao et al., 2004), this finding was intriguing (Table 3). The haplotypic variation within the seven N1a samples was relatively high (Table 2), with these haplotypes belonging to both the European and Central Asian branches of this haplogroup, as recently defined by Haak et al. (2005). Thus, the source of N1a haplotypes in Altaian Kazakhs was unclear, although they seemed to have originated west of this part of Central Asia (Gokcumen et al., 2007).Interestingly, mtDNA haplogroup N1a also pops up in Havik Brahmins from India, ancient high status Hungarians, as well as Iron Age Kazakhstan, and Neolithic Central Europeans.
American Journal of Physical Anthropology (early view)
Genetic variation in the enigmatic Altaian Kazakhs of South-Central Russia: Insights into Turkic population history
Omer Gokcumen et al.
The Altaian Kazakhs, a Turkic speaking group, now reside in the southern part of the Altai Republic in south-central Russia. According to historical accounts, they are one of several ethnic and geographical subdivisions of the Kazakh nomadic group that migrated from China and Western Mongolia into the Altai region during the 19th Century. However, their population history of the Altaian Kazakhs and the genetic relationships with other Kazakh groups and neighboring Turkic-speaking populations is not well understood. To begin elucidating their genetic history, we analyzed the mtDNAs from 237 Altaian Kazakhs through a combination of SNP analysis and HVS1 sequencing. This analysis revealed that their mtDNA gene pool was comprised of roughly equal proportions of East (A-G, M7, M13, Y and Z) and West (H, HV, pre-HV, R, IK, JT, X, U) Eurasian haplogroups, with the haplotypic diversity within haplogroups C, D, H, and U being particularly high. This pattern of diversity likely reflects the complex interactions of the Kazakhs with other Turkic groups, Mongolians, and indigenous Altaians. Overall, these data have important implications for Kazakh population history, the genetic prehistory of the Altai-Sayan region, and the phylogeography of major mitochondrial lineages in Eurasia.
Link
July 19, 2007
Y chromosome differences between southern and northern Altaians
Genetika. 2007 May;43(5):675-87.
[Gene pool differences between northern and southern Altaians inferred from the data on Y-chromosomal haplogroups]
[Article in Russian]
[No authors listed]
Y-chromosomal haplogroups composition and frequencies were analyzed in Northern and Southern Altaians. In the gene pool of Altaians a total of 18 Y-chromosomal haplogroups were identified, including C3xM77, C3c, DxM15, E, F*, J2, I1a, I1b, K*, N*, N2, N3a, O3, P*, Q*, R1*, R1a1, and R1b3. The structured nature of the Altaic gene pool is determined by the presence of the Caucasoid and Mongoloid components, along with the ancient genetic substratum, marked by the corresponding Western and Eastern Eurasian haplogroups. Haplogroup R1a1 prevailed in both ethnic groups, accounting for about 53 and 38% of paternal lineages in Southern and Northern Altaians, respectively. This haplogroup is thought to be associated with the eastward expansion of early Indo-Europeans, and marks Caucasoid element in the gene pools of South Siberian populations. Similarly to haplogroup K*, the second frequent haplogroup Q* represents paleo-Asiatic marker, probably associated with the Ket and Samoyedic contributions to the Altaic gene pool. The presence of lineages N2 and N3a can be explained as the contribution of Finno--Ugric tribes, assimilated by ancient Turks. The presence of haplogroups C3xM77, C3c, N*, and 03 reflects the contribution of Central Asian Mongoloid groups. These haplogroups, probably, mark the latest movements of Mongolian migrants from the territory of contemporary Tuva and Mongolia. The data of factor analysis, variance analysis, cluster analysis, and phylogenetic analysis point to substantial genetic differentiation of Northern and Southern Altaians. The differences between Northern and Southern Altaians in the haplogroup composition, as well as in the internal haplotype structure were demonstrated.
Link
[Gene pool differences between northern and southern Altaians inferred from the data on Y-chromosomal haplogroups]
[Article in Russian]
[No authors listed]
Y-chromosomal haplogroups composition and frequencies were analyzed in Northern and Southern Altaians. In the gene pool of Altaians a total of 18 Y-chromosomal haplogroups were identified, including C3xM77, C3c, DxM15, E, F*, J2, I1a, I1b, K*, N*, N2, N3a, O3, P*, Q*, R1*, R1a1, and R1b3. The structured nature of the Altaic gene pool is determined by the presence of the Caucasoid and Mongoloid components, along with the ancient genetic substratum, marked by the corresponding Western and Eastern Eurasian haplogroups. Haplogroup R1a1 prevailed in both ethnic groups, accounting for about 53 and 38% of paternal lineages in Southern and Northern Altaians, respectively. This haplogroup is thought to be associated with the eastward expansion of early Indo-Europeans, and marks Caucasoid element in the gene pools of South Siberian populations. Similarly to haplogroup K*, the second frequent haplogroup Q* represents paleo-Asiatic marker, probably associated with the Ket and Samoyedic contributions to the Altaic gene pool. The presence of lineages N2 and N3a can be explained as the contribution of Finno--Ugric tribes, assimilated by ancient Turks. The presence of haplogroups C3xM77, C3c, N*, and 03 reflects the contribution of Central Asian Mongoloid groups. These haplogroups, probably, mark the latest movements of Mongolian migrants from the territory of contemporary Tuva and Mongolia. The data of factor analysis, variance analysis, cluster analysis, and phylogenetic analysis point to substantial genetic differentiation of Northern and Southern Altaians. The differences between Northern and Southern Altaians in the haplogroup composition, as well as in the internal haplotype structure were demonstrated.
Link
August 09, 2006
August 1 update of YHRD
YHRD, the Y Chromosome Haplotype Reference Database has been updated on August 1:
So, head on there to see if you get any new matches for your Y-chromosome samples.
The following populations were added today: Iceland, Elista (Russia, Kalmyks), Ecuador (Mestizo, Afroamerican, Quichua, Huaorani), Bama (China, Yao), Chengdu (China, Han), Zhenning (China, Buyi), Molidawa (China, Daur and Ewenki), Yuanjiang (China, Hani), Tongjiang (China, Hezhen), Tongxin (China, Hui), Yanji (China, Korean), Tongshi (China, Li), Xiuyan (China, Manchu), Alihe (China, Oroqen), Maowen (China, Qiang), Luoyuan (China, Fujian), Lhasa (China, Tibet), Yili (China, Xibe, Uigur and Han), Harbin (China, Han), Hailar (China, Mongolian), Lanzhou (China, Han), Liannan (China, Yao), Meixian (China, Han), Urumqi (China, Uigur), Mongolia, Japan, Korea, Gdansk (Poland), Nepal, Sao Paulo State (Brazil, European, African, Oriental and Pardo), Buenos Aires (Argentina), Santa Fe (Argentina), Mendoza (Argentina), Rio Negro (Argentina), Chubut (Argentina), Misiones (Argentina), Corrientes (Argentina), Formosa (Argentina), Chaco (Argentina), Salta (Argentina). We would like to thank the following colleagues for submitting these population samples: Daniel Corach and his group (Buenos Aires), Rune Andreassen and his group (Oslo, Norway), Ivan Nasidze and his group (Leipzig, Germany), Fabricio Gonzalez and his group (Quito, Ecuador), Chris Tyler-Smith, Yali Xue and their group (Cambridge, UK), Richard Pawlowski and his group (Gdansk, Poland), Rogerio Nogueira Oliveira and his group (Sao Paulo, Brazil), Gustavo Penacino and his group (Buenos Aires, Argentina), Emma Parkin, Mark Jobling and their group (Leicester, UK).
So, head on there to see if you get any new matches for your Y-chromosome samples.
April 27, 2006
mtDNA of ancient Inner Mongolian tribe
From the conclusions:
American Journal of Physical Anthropology (Early View)
Molecular genetic analysis of Wanggu remains, Inner Mongolia, China
Yuqin Fu et al.
Abstract
The Wanggu tribe, which contributed significantly to the foundation of the Yuan Dynasty, was one of the groups living on the Mongolian steppes during the Jin-Yuan period (AD 1127-1368) of Chinese history. However, there has been both archaeological and historical dispute regarding the origin of the ancient tribe. Recently, we discovered human remains of the Wanggu tribe in the Chengbozi cemetery in the Siziwang Banner of Inner Mongolia, China. To investigate the genetic structure of the Wanggu tribe and to trace the origins of the tribe at a molecular level, we analyzed the control-region sequences and coding regions of mitochondrial DNA (mtDNA) from the remains by direct sequencing and restriction-fragment length polymorphism analysis. In combination with mtDNA data of 15 extant Eurasian populations, we performed phylogenetic analysis and multidimensional scaling analysis. Our results show that the genetic structure of the Wanggu tribe in the Jin-Yuan period is a complex matriline, containing admixture from both Asian and European populations. In addition, we reveal that on the basis of mtDNA data, the ancient tribe may share a recent common ancestor with the Turkic-speaking Uzbeks and Uighurs.
Link
The present study shows that the genetic structure of the Wanggu tribe is a complex matriline, involving the admixture of Europeans and Asians, including East
Asian and Siberian groups. Moreover, the Asian lineage probably contributes more than the European lineage to the ancient tribe. The Wanggu tribe has closer affinities with the Uzbeks and Uighurs, which to some extent reflects that the Wanggu tribe has a recent common origin with the two groups. Nevertheless, our conclusions are inevitably constrained by the small sample size of the Wanggu tribe. More samples and more studies will sufficiently reveal the origin of the ancient tribe.
American Journal of Physical Anthropology (Early View)
Molecular genetic analysis of Wanggu remains, Inner Mongolia, China
Yuqin Fu et al.
Abstract
The Wanggu tribe, which contributed significantly to the foundation of the Yuan Dynasty, was one of the groups living on the Mongolian steppes during the Jin-Yuan period (AD 1127-1368) of Chinese history. However, there has been both archaeological and historical dispute regarding the origin of the ancient tribe. Recently, we discovered human remains of the Wanggu tribe in the Chengbozi cemetery in the Siziwang Banner of Inner Mongolia, China. To investigate the genetic structure of the Wanggu tribe and to trace the origins of the tribe at a molecular level, we analyzed the control-region sequences and coding regions of mitochondrial DNA (mtDNA) from the remains by direct sequencing and restriction-fragment length polymorphism analysis. In combination with mtDNA data of 15 extant Eurasian populations, we performed phylogenetic analysis and multidimensional scaling analysis. Our results show that the genetic structure of the Wanggu tribe in the Jin-Yuan period is a complex matriline, containing admixture from both Asian and European populations. In addition, we reveal that on the basis of mtDNA data, the ancient tribe may share a recent common ancestor with the Turkic-speaking Uzbeks and Uighurs.
Link
April 06, 2006
Population origins of Mongolians
More on this after I get a chance to read the paper...
Am J Phys Anthropol. 2006 Apr 4; [Epub ahead of print]
Population origins in Mongolia: Genetic structure analysis of ancient and modern DNA.
Keyser-Tracqui C, Crubezy E, Pamzsav H, Varga T, Ludes B.
In the present study, nuclear (autosomal and Y-chromosome short tandem repeats) and mitochondrial (hypervariable region I) ancient DNA data previously obtained from a 2,300-year-old Xiongnu population of the Egyin Gol Valley (south of Lake Baikal in northern Mongolia) (Keyser-Tracqui et al. 2003 Am. J. Hum. Genet. 73:247-260) were compared with data from two contemporary Mongolian populations: one from the same location (Egyin Gol Valley plus a perimeter of less than 100 km around the valley), and one from the whole of Mongolia. The principal objective of this comparative analysis was to assess the likelihood that genetic continuity exists between ancient and present-day Mongolian populations. Since the ancient Xiongnu sample might have been composed of some of the ancestors of the present-day Yakuts, data from a present-day Yakut population, as well as published data from Turkish populations, were also included in the comparative analysis. The main result of our study was the genetic similarity observed among Mongolian samples from different periods and geographic areas. This result supports the hypothesis that the succession over time of different Turkic and Mongolian tribes in the current territory of Mongolia resulted in cultural rather than genetic exchanges. Furthermore, it appears that the Yakuts probably did not find their origin among the Xiongnu tribes, as we previously hypothesized.
Link
Am J Phys Anthropol. 2006 Apr 4; [Epub ahead of print]
Population origins in Mongolia: Genetic structure analysis of ancient and modern DNA.
Keyser-Tracqui C, Crubezy E, Pamzsav H, Varga T, Ludes B.
In the present study, nuclear (autosomal and Y-chromosome short tandem repeats) and mitochondrial (hypervariable region I) ancient DNA data previously obtained from a 2,300-year-old Xiongnu population of the Egyin Gol Valley (south of Lake Baikal in northern Mongolia) (Keyser-Tracqui et al. 2003 Am. J. Hum. Genet. 73:247-260) were compared with data from two contemporary Mongolian populations: one from the same location (Egyin Gol Valley plus a perimeter of less than 100 km around the valley), and one from the whole of Mongolia. The principal objective of this comparative analysis was to assess the likelihood that genetic continuity exists between ancient and present-day Mongolian populations. Since the ancient Xiongnu sample might have been composed of some of the ancestors of the present-day Yakuts, data from a present-day Yakut population, as well as published data from Turkish populations, were also included in the comparative analysis. The main result of our study was the genetic similarity observed among Mongolian samples from different periods and geographic areas. This result supports the hypothesis that the succession over time of different Turkic and Mongolian tribes in the current territory of Mongolia resulted in cultural rather than genetic exchanges. Furthermore, it appears that the Yakuts probably did not find their origin among the Xiongnu tribes, as we previously hypothesized.
Link
February 21, 2006
Expansion of East Asian populations
Genetics. 2006 Feb 19; [Epub ahead of print]
Male demography in East Asia: a north-south contrast in human population expansion times.
Y. Xue et al.
The human population has increased greatly in size in the last 100,000 years, but the initial stimuli to growth, the times when expansion started, and their variation between different parts of the world are poorly understood. We have investigated male demography in East Asia, applying a Bayesian full-likelihood analysis to data from 988 men representing 27 populations from China, Mongolia, Korea and Japan typed with 45 binary and 16 STR markers from the Y chromosome. According to our analysis, the northern populations examined all started to expand in number between 34 (18-68) and 22 (12-39) thousand years ago (KYA), before the Last Glacial Maximum at 21-18 KYA, while the southern populations all started to expand between 18 (6-47) and 12 (1-45) KYA, but then grew faster. We suggest that the northern populations expanded earlier because they could exploit the abundant megafauna of the 'Mammoth Steppe', while the southern populations could only increase in number when a warmer and more stable climate led to more plentiful plant resources such as tubers.
Link
Male demography in East Asia: a north-south contrast in human population expansion times.
Y. Xue et al.
The human population has increased greatly in size in the last 100,000 years, but the initial stimuli to growth, the times when expansion started, and their variation between different parts of the world are poorly understood. We have investigated male demography in East Asia, applying a Bayesian full-likelihood analysis to data from 988 men representing 27 populations from China, Mongolia, Korea and Japan typed with 45 binary and 16 STR markers from the Y chromosome. According to our analysis, the northern populations examined all started to expand in number between 34 (18-68) and 22 (12-39) thousand years ago (KYA), before the Last Glacial Maximum at 21-18 KYA, while the southern populations all started to expand between 18 (6-47) and 12 (1-45) KYA, but then grew faster. We suggest that the northern populations expanded earlier because they could exploit the abundant megafauna of the 'Mammoth Steppe', while the southern populations could only increase in number when a warmer and more stable climate led to more plentiful plant resources such as tubers.
Link
December 29, 2005
The questionable contribution of the Neolithic and the Bronze Age to European craniofacial form (?)
C. Loring Brace and colleagues have published a new paper in PNAS which examines several populations from West Eurasia and Africa based on 24 cranial measurements.
The first canonical variate (horizontal) clearly separates the Niger-Congo group from the other populations:

According to Brace et al:
Brace et al. also combined samples into regional groups. The canonical variate plot again shows the separate of the Niger-Congo group, and the intermediacy of the Natufians between West Eurasians and North/East Africans and Eurasians.

The raw Mahalanobis distances are quite informative.

It can be easily seen that the Niger-Congo have high distances from all other populations, except Northeast Africans. Northeast Africans are however closer to Late Prehistoric Eurasians and Modern Europeans than to the Niger-Congo group. This, once more, establishes the intermediacy of Northeast Africans between Caucasoids and Sub-Saharan Africans.
All populations except the Niger-Congo and the Natufians are close to each other. The Natufians have very high distances from other samples. Their closest neighbors are first, Late Prehistoric Eurasia, and second, Niger-Congo.
According to Brace:
Brace's conclusion is stated in conditional form:
Brace finds similarities between the ancient Neolithic culture-bearers and modern Mediterranean populations, which is no doubt accurate. On the other hand, in continental Europe, the "signal" of the Neolithic populations has been absorbed by the indigenous inhabitants. This is all fine, and agrees nicely with the picture presented sixty five years ago by Carleton Coon, whereby the invasion of Europe by gracile dolichomorphs (skeletally Mediterranean) populations was followed by a period of absorption and "re-emergence" of the Upper Paleolithic types and their mixtures with the Mediterraneans.
Indeed, the early inhabitants of Northern Europe were robust broad-faced Cro-Magnoids, unlike the gracile narrow-faced Mediterraneans which diffused through Central Europe from a proximate Southeastern European source. Brace studies Cro-Magnon to propose that:

The retention of the "Upper Paleolithic" signal in modern Europeans is quite impressive, since Europe's colonization did not cease with Cro-Magnon in the first Upper Paleolithic.
Cro-Magnon was a coarse-featured and robust skull atypical of modern Europeans, but one may still find individuals in Europe which resemble him: Brace et al. did not test for his resemblance to individuals. Moreover, he did not test Cro-Magnon against individual European populations. For example, Jantz and Owsley concluded that:
I have sent the following questions to Dr. Brace regarding his study. If and when he responds, and if I am granted permission to publish his response, I will do so in these entry:
Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0509801102
The questionable contribution of the Neolithic and the Bronze Age to European craniofacial form
C. Loring Brace et al.
Many human craniofacial dimensions are largely of neutral adaptive significance, and an analysis of their variation can serve as an indication of the extent to which any given population is genetically related to or differs from any other. When 24 craniofacial measurements of a series of human populations are used to generate neighbor-joining dendrograms, it is no surprise that all modern European groups, ranging all of the way from Scandinavia to eastern Europe and throughout the Mediterranean to the Middle East, show that they are closely related to each other. The surprise is that the Neolithic peoples of Europe and their Bronze Age successors are not closely related to the modern inhabitants, although the prehistoric/modern ties are somewhat more apparent in southern Europe. It is a further surprise that the Epipalaeolithic Natufian of Israel from whom the Neolithic realm was assumed to arise has a clear link to Sub-Saharan Africa. Basques and Canary Islanders are clearly associated with modern Europeans. When canonical variates are plotted, neither sample ties in with Cro-Magnon as was once suggested. The data treated here support the idea that the Neolithic moved out of the Near East into the circum-Mediterranean areas and Europe by a process of demic diffusion but that subsequently the in situ residents of those areas, derived from the Late Pleistocene inhabitants, absorbed both the agricultural life way and the people who had brought it.
Link
The first canonical variate (horizontal) clearly separates the Niger-Congo group from the other populations:

According to Brace et al:
When the samples used in Fig. 1 are compared by the use of canonical variate plots as in Fig. 2, the separateness of the Niger-Congo speakers is again quite clear. Interestingly enough, however, the small Natufian sample falls between the Niger-Congo group and the other samples used. Fig. 2 shows the plot produced by the first two canonical variates, but the same thing happens when canonical variates 1 and 3 (not shown here) are used. This placement suggests that there may have been a Sub-Saharan African element in the make-up of the Natufians (the putative ancestors of the subsequent Neolithic), although in this particular test there is no such evident presence in the North African or Egyptian samples. As shown in Fig. 1, the Somalis and the Egyptian Bronze Age sample from Naqada may also have a hint of a Sub-Saharan African component. That was not borne out in the canonical variate plot (Fig. 2), and there was no evidence of such an involvement in the Algerian Neolithic (Gambetta) sample.
Brace et al. also combined samples into regional groups. The canonical variate plot again shows the separate of the Niger-Congo group, and the intermediacy of the Natufians between West Eurasians and North/East Africans and Eurasians.

The raw Mahalanobis distances are quite informative.

It can be easily seen that the Niger-Congo have high distances from all other populations, except Northeast Africans. Northeast Africans are however closer to Late Prehistoric Eurasians and Modern Europeans than to the Niger-Congo group. This, once more, establishes the intermediacy of Northeast Africans between Caucasoids and Sub-Saharan Africans.
All populations except the Niger-Congo and the Natufians are close to each other. The Natufians have very high distances from other samples. Their closest neighbors are first, Late Prehistoric Eurasia, and second, Niger-Congo.
According to Brace:
The generally high D2 values for the Natufian sample in Table 3 are almost certainly a reflection of the very small sample size.The Natufian sample consisted of only 4 individuals. Thus, it appears that the high distances of the Niger-Congo group are indicative of its biological distinctiveness, whereas the high distances of the Natufians are due to the small sample size.
Brace's conclusion is stated in conditional form:
If the Late Pleistocene Natufian sample from Israel is the source from which that Neolithic spread was derived, then there was clearly a Sub-Saharan African element present of almost equal importance as the Late Prehistoric Eurasian element. At the same time, the failure of the Neolithic and Bronze Age samples in central and northern Europe to tie to the modern inhabitants supports the suggestion that, while a farming mode of subsistence was spread westward and also north to Crimea and east to Mongolia by actual movement of communities of farmers, the indigenous foragers in each of those areas ultimately absorbed both the agricultural subsistence strategy and also the people who had brought it.The "if" portion of the statement is problematic. While Natufians are widely acknowledged as a culture anticipating the arrival of the Neolithic, they were not the first Neolithic agriculturalists, nor where they the immediate source of the transmission of agriculture. According to Pinhasi and Pluciennik (CURRENT ANTHROPOLOGY Volume 45, Number S4, August-October 2004):
Analysis of the material suggests that there was considerable morphological heterogeneity among the earliest farmers of the Levant belonging to the Pre-Pottery Neolithic but that similar variability is generally not seen among the earliest mainland agriculturalists of south-eastern Europe. We propose that this may be explained by the existence of a genetic "bottleneck" among Anatolian populations and that it supports models of the largely exogenous origin of many early Neolithic populations in this region.Thus, the sample of 4 Natufian individuals does not represent the first pre-pottery Neolithic populations, and moreover, it does not represent the immediate source of the Neolithic in Europe, which was that of the Neolithic agriculturalists of Anatolia. As Pinhasi and Pluciennik state:
Analysis of morphological variability in the Near East and Europe (here and in Pinhasi 2003) suggests that the Epipalaeolithic populations from the Natufian Levant were noticeably different to the Mesolithic populations described from the Danube Gorge, the western Mediterranean, and central Europe. No close similarities were observed between Early Neolithic and Mesolithic European groups in any of the regions studied, with the possible exception of Mediterranean Europe. However, neither were clear affinities observed between Epipalaeolithic Near Eastern groups and any other Neolithic or Mesolithic groups.The last statement is important, because it establishes that the Natufians did not have clear associations with the first Neolithic groups. So, while they are believed to be pre-agricultural culturally they are not related to any Neolithic groups biologically.
Brace finds similarities between the ancient Neolithic culture-bearers and modern Mediterranean populations, which is no doubt accurate. On the other hand, in continental Europe, the "signal" of the Neolithic populations has been absorbed by the indigenous inhabitants. This is all fine, and agrees nicely with the picture presented sixty five years ago by Carleton Coon, whereby the invasion of Europe by gracile dolichomorphs (skeletally Mediterranean) populations was followed by a period of absorption and "re-emergence" of the Upper Paleolithic types and their mixtures with the Mediterraneans.
Indeed, the early inhabitants of Northern Europe were robust broad-faced Cro-Magnoids, unlike the gracile narrow-faced Mediterraneans which diffused through Central Europe from a proximate Southeastern European source. Brace studies Cro-Magnon to propose that:
If this analysis shows nothing else, it demonstrates that the oft-repeated European feeling that the Cro-Magnons are ‘‘us’’ (47) is more a product of anthropological folklore than the result of the metric data available from the skeletal remains.Yes, this bizarre statement is not supported by his own data, which shows that Cro-Magnon shows that the Modern European sample is the only one to which Cro-Magnon is aligned to, however distantly:

The retention of the "Upper Paleolithic" signal in modern Europeans is quite impressive, since Europe's colonization did not cease with Cro-Magnon in the first Upper Paleolithic.
Cro-Magnon was a coarse-featured and robust skull atypical of modern Europeans, but one may still find individuals in Europe which resemble him: Brace et al. did not test for his resemblance to individuals. Moreover, he did not test Cro-Magnon against individual European populations. For example, Jantz and Owsley concluded that:
Using raw measurements, 6 of 8 express an affinity to Norse, and with the shape variables of Darroch and Mosimann ([1985]), 5 of 8 express a similarity to Norse. Using shape variables reduces the Mahalanobis distance, substantially in some cases. Typicality probabilities (Wilson, [1981]), particularly for the shape variables, show the crania to be fairly typical of recent populations. The results presented in Table 1 are consistent with the idea that Upper Paleolithic crania are, for the most part, larger and more generalized versions of recent Europeans. Howells ([1995]) reached a similar conclusion with respect to European Mesolithic crania.UPDATE
I have sent the following questions to Dr. Brace regarding his study. If and when he responds, and if I am granted permission to publish his response, I will do so in these entry:
You state that Modern Europeans are not very closely linked to
Neolithic/Bronze Age Europeans, yet in Table 3, the distance between
"Modern Europe" and "Late Prehistoric Eurasia" is 1.87 which is the
lowest among all population pairs. "Late Prehistoric Eurasia" is
defined as:
"Then Neolithic samples from Denmark, England, France, Germany, and
Portugal were combined with Bronze Age samples from England, Jericho,
and Mongolia to make a ''Late Prehistoric Eurasia'' sample."
This would seem to indicate a strong affinity between Neolithic/Bronze
Age Europeans and modern Europeans.
Moreover, you state that "the oft-repeated European feeling that the
Cro-Magnons are ''us'' (47) is more a product of anthropological
folklore than the result of the metric data available from the
skeletal remains."
But, in Table 4, Cro-Magnon I shows mixed affiliations between Modern
Europe and Late Prehistoric Eurasia. The inability to fall completely
in either Modern Europe or LP Eurasia is not surprising, since Modern
Europe and Late Prehistoric Eurasia are extremely close to each other
(Table 3). So, the data in Table 4 seem to suggest that Cro-Magnon I
did in fact resemble modern Europeans and Late Prehistoric Eurasians.
I would be very interested in hearing your comments.
Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0509801102
The questionable contribution of the Neolithic and the Bronze Age to European craniofacial form
C. Loring Brace et al.
Many human craniofacial dimensions are largely of neutral adaptive significance, and an analysis of their variation can serve as an indication of the extent to which any given population is genetically related to or differs from any other. When 24 craniofacial measurements of a series of human populations are used to generate neighbor-joining dendrograms, it is no surprise that all modern European groups, ranging all of the way from Scandinavia to eastern Europe and throughout the Mediterranean to the Middle East, show that they are closely related to each other. The surprise is that the Neolithic peoples of Europe and their Bronze Age successors are not closely related to the modern inhabitants, although the prehistoric/modern ties are somewhat more apparent in southern Europe. It is a further surprise that the Epipalaeolithic Natufian of Israel from whom the Neolithic realm was assumed to arise has a clear link to Sub-Saharan Africa. Basques and Canary Islanders are clearly associated with modern Europeans. When canonical variates are plotted, neither sample ties in with Cro-Magnon as was once suggested. The data treated here support the idea that the Neolithic moved out of the Near East into the circum-Mediterranean areas and Europe by a process of demic diffusion but that subsequently the in situ residents of those areas, derived from the Late Pleistocene inhabitants, absorbed both the agricultural life way and the people who had brought it.
Link
Subscribe to:
Posts (Atom)