Showing posts with label ISABS. Show all posts
Showing posts with label ISABS. Show all posts

September 03, 2013

ISABS 2013 abstracts

From the book of abstracts (pdf):

MITOCHONDRIAL DNA AND PHYLOGENETIC ANALYSIS OF PREHISTORIC NORTH AFRICAN POPULATIONS
North Africa is located at a crossroad between Europe, Africa and Asia and has been inhabited since the Prehistoric time. In the Epipaleolithic period (23.000 years to 10.000 years BP), the Western North Africa has been occupied by Mecha- Afalou Men, authors of the Iberomaurusian industry. The origin of the Iberomaurusians is unresolved, several hypotheses have been forwarded. With the aim to contribute to a better knowledge of the Iberomaurusian settlement we analysed the mitochondrial DNA (mtDNA) of skeletons exhumed from the prehistoric site of Taforalt in Morocco (23.000-10.800 years BP) and Afalou in Algeria (11.000 to 15.000 BP -Algeria). Hypervariable segment 1 of mtDNA from 38 individuals were amplified by Real-Time PCR and directly sequenced. Sequences were aligned with the reference sequence to perform the mtDNA classification within haplogroups. Phylogenetic analysis based on mitochondrial sequences from Mediterranean populations was performed using Neighbor-Joining algorithm implemented in MEGA program. mtDNA sequences from Afalou and Taforalt were classified in Eurasiatic and North African haplogroups. We noted the absence of Sub-Saharan haplotypes. Phylogenetic tree clustered Taforalt with European populations. Our results excluded the hypothesis of the sub-Saharan origin of Iberomaurusians populations and highlighted the genetic flow between Northern and Southern cost of Mediterranean since Epipaleolithic period.

DISCONTINUITY SCREENING OF THE EARLY FARMERS’ MT-DNA LINEAGES IN THE CARPATHIAN BASIN
Discontinuous mitochondrial (mt) haplotype data between Central-Europe’s first farmers and contemporary Europeans have been described before. Hungary was a key-area of the Neolithisation, in the route of Neolithisation following the River Danube, and that was also the birthplace of the Linear Pottery Culture, which later colonised Western and Northern Europe. Neolithic and post-Neolithic human remains as well as contemporary population of Hungary is involved in our project to gain information on their mt-haplotype pattern and especially on the frequency of Asian haplotypes in the Carpathian Basin. HVS-I sequences from nt15977 to nt16430 of Neolithic specimens with sufficient mtDNA preservation among an extended Neolithic collection were analysed for polymorphisms, identifying 23 different ones. A novel, N9a, N1a, C5, D1/G1a, M/R24 haplogroups were determined among the pre-industrial Hungarians. The presence of Asian haplotypes in the ancient populations must be taken into consideration when reconstructing the population history of Europe and Asia, so a survey of the recent Asian haplotype frequency in Europe is unavoidable. The ancient and recent haplotype pattern of Hungary is definitely worth further investigation to test a theory on the continuous population history of Europe, wheter genetic gaps between ancient and recent human populations of Europe were more likely to be detected. 

ANTHROPOLOGIC AND MITOCHONDRIAL DNA ANALYSIS OF A MEDIEVAL GRAVEYARD FROM SOPOT (CROATIA)
Anthropologic and DNA analysis of human remains recovered from a graveyard in ©opot near Benkovac (Croatia) dating to the 14th/15th century was conducted in order to reconstruct the origin and life conditions of the people populating the region at that time. The dynamics of the population represented in this graveyard are important for understanding Croatian history because the deceased individuals were buried according to pagan ritual which was uncommon in a post Christianization period. Human remains from a total of 31 graves were analyzed, in which 47 individuals were found (9 female, 23 male and 15 children). Average age at death for adults was lower than expected (for female 28.9, male 32.4 years), suggesting that the living conditions of these individuals were poor. In addition, 10 antemortem traumas were visible on 6 adults, which is a higher rate than expected, and indicates potential violence within the population group. Finally, mitochondrial DNA (mtDNA) analysis was performed on hypervariable regions one and two for 46 of the individuals. Due to the age and condition of the remains, only 19 of the samples yielded full sequence profiles. Haplogroup analysis was performed for these 19 individuals, with the majority of the results falling within the most common groups in present-day Croatia. However, examination of the lesscommon haplogroups suggested a possible migration of individuals from Asia. Collectively, the physical and molecular results from this study provide evidence to suggest that individuals recovered from this gravesite are not from the current indigenous population.
MATERNAL GENETIC PROFILE OF A NORTHWEST ALGERIAN POPULATION
The North African population gene pool based on mitochondrial DNA (mtDNA) polymorphisms has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. Recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North- South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the continent. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population. mtDNA sequences analysis was performed on the regulatory hypervariable segment I region (HVSI). Haplogroup diagnostic mutations were analyzed using PCR-RFLPs and/or SNaPshot multiplex reactions. Of all North African populations, Eurasian lineages are the most frequent in Algeria (80%) while sub-Saharan Africa origin accounts for the remaining (20%). Within them, the North African genetic component U6 and M1 count for 20%. Indeed, the U6 haplogroup, highly distributed in Northwestern African populations, show a high frequency in Algeria (11.83%), while, the M1 frequency (7.1%) raises an anomalous peak in its decreasing Northeast - Northwest gradient. Moreover, the high frequency of HV subgroups (38.33%) point to direct maritime contacts between the European and North African western sides of the Mediterranean. Besides, the most common western H subgroups, H1 (47.8%) and H3 (10.1%), represent 60% of H lineages. These frequencies and HV0 (7.5%) lie well within the observed Northwestern to Northeastern African decreasing gradients.
MATERNAL GENETIC VARIATION OF THE SLOVENIAN POPULATION IN A BROADER EUROPEAN CONTEXT AND COMPARED TO ITS PATERNAL COUNTERPART
Slovenia is a European country situated at the crossroads of main European cultural and trade routes. It is geographically more linked to Central Europe, but history draws it closer together to its ex-Yugoslavian, Southeast European (SEE) neighbors. Slovenian maternal heritage has not been analyzed since 2003 and our aim was to analyze SNP markers of 97 Slovenian mtDNAs in high resolution to see where this population fits according to its maternal genetic variation. We compared the Slovenian sample with the neighboring SEE populations, as well as with other published European population datasets. Also, we compared the obtained mtDNA variation results with the available Slovenian Y chromosome data to see how these two uniparental marker systems correspond to each other. In the PC plot based on mtDNA haplogroups frequencies, Slovenian population has an outlying position mostly due to the increased prevalence of J (14.4%) and T (15.4%) clade and especially because of the abundance and diversity of J1c samples in Slovenia, represented with 8 haplotypes and in a percentage of >11%. Although in an outlying position, Slovenian mtDNA variation still shows a certain degree of affinity to SEE. On the contrary, Slovenia’s paternal genetic heritage yielded results that correspond to the population’s geographic location and groups Slovenian population considerably closer to Central European countries, based on increased prevalence of Northern/Central European R1a-M198 and decreased frequency of Balkan-specific I2a2-M423. Such differences in maternal and paternal marker systems could indicate that Slovenian genetic variation was influenced by sex-biased demographic events.
AN ASIAN TRACE IN THE GENETIC HERITAGE OF THE EASTERN ADRIATIC ISLAND OF HVAR
The Island of Hvar is situated in the central eastern Adriatic, and its relatively small rural population has been reproductively isolated thought history. Therefore, founder effects, genetic drift and inbreeding have had significant role in the shaping of current genetic diversity of Hvar Islanders. We analyzed Y-chromosome SNP markers of 412 Hvar islanders in high resolution, with the aim to investigate the current paternal genetic diversity. We found a relatively high frequency (6.1%) of unrelated male samples belonging to the Q*-M424 haplogroup, which is unusual for European populations. Interestingly, a previous study showed 9 individuals from Hvar with mitochondrial haplogroup F, which is almost absent in Europe. Both findings could indicate a certain connection with Asian populations, where these haplogroups are most common. This might be a result of several migratory events in the history, one of which could be linked to the ancient Silk Road, the other a consequence of the arrival of the Slavs, following the Avars, to the eastern Adriatic in the 6th century or due to the expansion of the Ottoman Empire in 16th to 18th century. The presence of these rare mitochondrial and Y-chromosome lineages are an example of founder effect and random genetic drift which, in this small island with a high degree of isolation and endogamy, had a strong impact on shaping the genetic diversity of the population. 
GENETIC PORTRAIT OF THE BESERMYAN ETHNIC GROUP BASED ON MTDNA HAPLOGROUP STUDY
Besermyan are a small ethnic group living in the Volga-Ural region of Russia. They belong to Finno-Ugric language group, but speak a special dialect. There are some Bulgar-Chuvash borrowings in their adverb vocabulary that are absent in other dialects of the Udmurt language. Besermyan live in the northwestern part of modern Udmurtia in the Cheptsa basin. In 2002 their number was about three thousand. The Besermyan origin is a very interesting issue. There is a view that the endonym Besermyan (beserman) is derived from the Turkic word which means flMuslim« in Arabic. This hypothesis, along with their language, hints at the origin of this ethnic group; however the genetic portrait of Besermyan has not been described yet. In our study we used the data of mitochondrial DNA (mtDNA) HVSI sequencing from 98 Besermyans representing 10 villages in Udmurtia Republic of Russia. The prevalence of Western Eurasian mtDNA lineages (91.7%) over Eastern Eurasian ones (9.2%) was shown in the studied population which is consistent with the structure of mtDNA pool of Finno-Ugric ethnic groups of the Volga-Ural region. Some Eastern Eurasian lineages in Besermyan are represented by haplogroups D4b, A4b and Z1a which are also common in Udmurts. It is important to note though that the share of Western Eurasian component in Udmurts according to previous study by Bermisheva et al. (2002) is about 74.5% so mtDNA haplogroup distribution in Besermyans is closer to other Finno-Ugric people of the Volga-Ural region: Mordvins and Maris.
COSMOPOLITAN CENTRAL ASIA: TAJIK MTDNA TRACES THE EASTWEST MOVEMENT OF ANCIENT NOMADS 
Tajikistan is a country in the mountains of southeast Central Asia. Due to its isolation, mtDNA variation in the Tajiks has been fragmentary studied on a limited number of samples. In 1997 saliva samples were collected from unrelated Tajiks across Tajikistan. After long-term preservation DNA was extracted from 2 mm FTA discs. Due to degradation mtDNA was amplified using the primary and secondary PCRs with nested primers in the multiplex format. The origin of 91 mitochondrial genomes from Tajikistan traced from western Eurasia (62.6%), eastern Eurasia (25.3%), south Asia (11.0%), and North Africa (1.1%). Significant population structure in the distribution of these mtDNA lineages was revealed within the regional groups in Tajikistan. The mtDNA variation was compared between the Tajiks and 45 populations of Eurasia. Pairwise Fst comparisons and the correspondence analysis revealed non-significant differences between the Tajik and Uzbek populations. Although both nations speak languages belonging to different linguistic groups, this result corresponds to their cultural and economic proximity. Surprisingly, after the Uzbeks, the Tajik mtDNA pool most closely resembles to the Ossetians, an Indo-Iranian people from the North Caucasus. The Tajiks also display intensive gene flow and admixture with some other populations of Central Asia and the Iranian Plateau living along the centers and crossroads of the earliest civilizations and belonging to different linguistic groups including the Uyghur, Kazakh, Karakalpak, Turkmen, Pathans, Iranian Arabs, and Gilaki. This study demonstrates an impact of ancient nomad migrations and invasions on the distribution of mtDNA variation in Eurasia. 

March 08, 2008

ISABS 2007 abstracts

Quite a few interesting abstracts from last year's ISABS Conference (book of abstracts).

Y-CHROMOSOME DIVERSITY IN SOUTHERN URALS: A GEOGRAPHIC BORDER BETWEEN EUROPE AND ASIA

Khusnutdinova E. et al.

Turkic-speaking Bashkirs are dispersed throughout the southern Ural region. They are considered by historians as descendants of Turkic- speaking nomadic communities that arrived in southern Urals at Early Medieval ages and assimilated indigenous population. We performed phylogenetic analysis of Y-chromosome lineages in a sample of 587 Bashkirs drawn from different parts of the southern Ural region and neighbouring areas: Abzelilovskiy (N=152), Sterlibashevskiy (N=54), Baimakskiy (N=95), and Burzyanskiy (N=82) districts of Bashkortostan republic, Orenburg (N=79), Perm (N=72), Samara and Saratov (N=51) Oblasts of Russia. Obtained samples of Y-chromosomes were analyzed using 24 biallelic markers of the Y chromosome non-recombining region. A total of 17 haplogroups were identified among which R1b3-M269, R1a1- SRY 1532, and N3-M46 lineages were predominant. Since N3-M46 lineage is prevalent among neighbouring Finno- Ugric populations and is rarely found in Central Asia, where numerous Turkicspeaking confederations dominated over a long period ancestors of Finno-Ugric groups are probable source population that contributed N3 lineage into Bashkirs. Y- Chromosome lineages specific to Central and East Asian populations (C3c- M48, O-M175) were absent or found with very low overall frequency (less than 10%). The only exception is R1b2 lineage which was found with very high frequency among Transural Bashkirs. Overall prevalence of typical West Eurasian (R1a-SRY 1532 and R1b3- M269) and North Eurasian (N3) lineages imply that Turkic-speaking newcomers were either admixed or genetic input associated with their arrival was limited.

INTRA-ETHNIC VARIATION OF THE Y CHROMOSOME IN EUROPEAN COUNTRIES: A COMPARATIVE STUDY

Balanovsky O et al.

To reveal degree of the regional Y chromosomal variation in Europe we compared our data on Russians (14 regional populations), Ukrainians (4 populations) and Belorussians (2 populations, and 2 populations from Behar et al., 2003) with the published regional data on other European countries. For reliable calculations neighbour populations were pooled to reach sample sizes above 70. To measure the intra-ethnic variation we calculated (i) the average genetic distance between regional populations of every group and (ii) Gst (Fst) variation. Gst value was considered as preferable measure, as it was found to be less sensitive to level of phylogenetic resolution in the data. Croatians, Finns, Russians and Italians were proved to be the most diverse (genetically subdivided) groups; Swedes and Germans demonstrated moderate variation; Greeks, Turks, Poles, Belorussians and Ukrainians were more genetically homogenous, showing lower geographic variation of the paternal lineages inside their countries. However, even lower variation of the Y chromosome is significantly higher as compared with analogous values calculated from mitochondrial DNA and autosomal data. This finding stresses that forensic studies may demand not only country-specific, but provincespecific databases (at least for listed above highly genetically subdivided countries), since haplogroup profiles differ significantly from one province to another, inside the same country. Despite the high intra-ethnic variation (Gst=0.03 on average), the inter-ethnic differences were five times higher (Gst=0.15), revealing dominance of inter-ethnic variation in structuring the paternal gene pool in Europe.

PHYLOGEOGRAPHY OF Y-CHROMOSOMAL LINEAGES IN NORTH EURASIA

Stepanov V et al.

Aim of the study was to reconstruct the evolution of paternal lineages in populations of Siberia, Central Asia and Eastern Europe. Forty population samples from 22 ethnic groups were studied. Totally 1600 Y chromosomes were genotyped for 40 biallelic markers according to Y chromosome consortium (YCC) classification. The microsatellite haplotypes within HG were constructed using 7 STR loci. Thirty one haplogroups were observed, but frequencies of only 7 of them (N3a, R1a1, Q*, C3xC3c, N2, C3c, O3) were higher than 3 percent. In sum these 7 haplogroups comprise 86% of Y-chromosomal gene pool in North Eurasia. The proportion of inter- population differences in the total genetic variability of region's population according to the analysis of molecular variance is 19%. Analysis of genetic relationships between populations reveals three main clusters of populations in space of two first PCs reflecting the differential presence of ancient West-Eurasian Caucasoid, Proto-Uralic and Paleoasiatic components. Based on analysis of microsatellite haplotypes within main Y- chromosomal haplogroups, molecular diversity within monophyletic lineages were calculated and phylogenetic trees for most common haplogroups were reconstructed. Western-Eurasian lineages (R1a1, R1b) are characterized by the maximal diversity in Eastern European populations. Eastern-Eurasian lineages have the high level of diversity in populations of Eastern Siberia and North-East Asia. The age of genetic diversity generation and time of population differentiation (Td) shows that most lineages which are common in North Eurasian populations dated back to Upper Paleolithic period before the last glacial maximum.

THE MITOCHONDRIAL DNA POLYMORPHISM IN UKRAINIAN POPULATION

Grechanina EY et al.

Study of mtDNA polymorphism for estimation genetic diversity of Ukrainian population. There are 239 samples of Ukrainians from different regions of Ukraine. There are sequention of hypervariable segment HVS I in combination with RFLPanalysis of coding sites of mtDNA and phylogeographical analysis. This research was in Estonian Biocenter. Length of sequencing fragment was 377 bp 102 positions from 377 were polymorphic. From these 91 nucleotide substitutions are transitions, with prevalence pyrimidine under purine (69:22). Transversions were in 11 sites. Were determined 157 haplotypes. The most common haplotype (10.0%) corresponds to CRS. Indexes of genetic diversity for Ukrainian population are H=0.986 and Di=5.19. Screening of polymorphic sites established following haplogroups of mtDNA, which have all-European spreading: H-33.5%, V-5.4%, HV-3.7%, J- 11.7%, T-6.7%, U-20.9% (U2, U3, U4, U5, U7, U8), K-2.9%, I-2.1%, W- 2.1%, X-2.5%. Subhaplogroup U3 (2.5%) may testify the presence Iranian component. Subhaplogroup U4 was detected with frequency 3.7%. Subhaplogroup U5 has maximal frequency in Scandinavian people also was detected in Ukrainian population with high frequency 10.8%. Haplogroup V, as marker of Finnish-Hungarian people, has high frequency in Ukrainian population. There were found Asian lines (A, B, C, D, Z) with frequency 2.0%. Data indicate on complicated ethnical formation of modern Ukrainian population, where assimilation processes and inter-ethnic interactions played considerable role. They will be important additions in context about polymorphism of European populations mtDNA.

A GLIMPSE AT THE FRENCH mtDNA GENETIC POOL

Pennarun E et al.

In the coverage of the genetic pool of Europe, some major cavities were left, hence to fill one of them, namely the French mtDNA pool we collected 868 samples from twelve different locations of France. Those samples were sequenced for the hypervariable segment I (HVS-I) and then typed for SNPs in the coding region, either by RFLP or 5' nuclease allelic discrimination, in order to assign them to the right haplogroup. Then the mtDNA gene pools of French Basques and Bretons were compared in terms of frequency and composition with relevant neighbouring populations. The French Basques’ mtDNA pool shares some common cardinal features with that of the Spanish Basques, represented in the high prevalence of haplogroup H. However, the French Basques do show a number of distinct features, most notably expressed in the much higher frequency of haplogroups linked with the Neolithic diffusion in Europe. In Brittany, Finistère shows closer affinities with Britain and Scandinavia than the two other departments of Brittany. The mtDNA haplogroup composition of the French does not differ significantly from the surrounding European genetic landscape. In a finer grain, microgeographical differentiation can be revealed as shown for the French Basque country and for Brittany.

CULTURAL AND GENETIC DIVERSITY IN CENTRAL ANATOLIA: A LOCAL PERSPECTIVE

Gokcumen O et al.

Anatolia has been an important crossroads for numerous populations since the Neolithic. Among these, the Hattis, Urartians, Lydians, Phyrigians and Ottomans emerged in Anatolia proper. In addition, although non-Anatolian in origin, the Hittites, Greeks, Romans and Byzantines influenced and were influenced by local Anatolian cultures. These dynamics, as well as more recent events, such as the Turco-Ottoman War of late 19th century, the reconfiguration of the populations of the Ottoman Empire and the Greek- Turkish population exchange of 1920s, have made Anatolia a culturally and genetically complex region. Despite this complex history, Anatolia has been often been viewed as a uniform cultural landscape. Working from this perspective, previous studies of genetic variation in Anatolia analyzed samples from Turkish populations obtained from mostly urban hospitals or universities. Such studies not only overlooked the regional variation within Anatolia, but also treated contemporary Turkish populations as the direct representatives of Medieval and Neolithic Anatolian populations. To address these problems, we collected ~125 samples and extensive ethnographic data from a location in Central Anatolia southeast of Ankara. The samples were analyzed for mtDNA and NRY diversity, and the resulting data compared with those from previous genetic analyses of Turkish populations. We observed that several ethnic and cultural groups having different population histories co-existed in this location. This pattern likely represents the typical picture of Anatolian variation. We are using our genetic data to help us clarify these distinct population histories in greater detail.