Showing posts with label Belgium. Show all posts
Showing posts with label Belgium. Show all posts

April 21, 2012

Bearers of French surnames in Flanders differ from those bearing Flemish surnames

This certainly appears consistent with my postulated origins of these subgroups within European R-M269. Hopefully the same process could be repeated in others parts of Europe.


We have a hierarchy of tools for uncovering the origins of modern populations: traditional genealogy for relatively recent ancestors, surnames for slightly older ancestors, and finally ancient DNA which could eventually be applied to historical persons and communities.

Related:




Heredity , (18 April 2012) | doi:10.1038/hdy.2012.17

In the name of the migrant father—Analysis of surname origins identifies genetic admixture events undetectable from genealogical records

M H D Larmuseau, J Vanoverbeke, G Gielis, N Vanderheyden, H F M Larmuseau and R Decorte

Abstract

Patrilineal heritable surnames are widely used to select autochthonous participants for studies on small-scale population genetic patterns owing to the unique link between the surname and a genetic marker, the Y-chromosome (Y-chr). Today, the question arises as to whether the surname origin will be informative on top of in-depth genealogical pedigrees. Admixture events that happened in the period after giving heritable surnames but before the start of genealogical records may be informative about the additional value of the surname origin. In this context, an interesting historical event is the demic migration from French-speaking regions in Northern France to the depopulated and Dutch-speaking region Flanders at the end of the sixteenth century. Y-chr subhaplogroups of individuals with a French/Roman surname that could be associated with this migration event were compared with those of a group with autochthonous Flemish surnames. Although these groups could not be differentiated based on in-depth genealogical data, they were significantly genetically different from each other. Moreover, the observed genetic divergence was related to the differences in the distributions of main Y-subhaplogroups between contemporary populations from Northern France and Flanders. Therefore, these results indicate that the surname origin can be an important feature on top of in-depth genealogical results to select autochthonous participants for a regional population genetic study based on Y-chromosomes.

Link

December 04, 2011

Old and recent clines in Brabant

This paper uses genealogical data to show that while some clines observed today stretch back to pre-industrial times, others do not. This is a nice result that shows that:
  • It's best to try to find test subjects with deep genealogies when one makes inferences about the past
  • Clines in modern-day populations may reflect very recent events, and not necessarily deep historical or even archaeological events
It should be mentioned that the paper does not contradict broad trends within the mentioned haplogroups that have been previously described. And, of course, this makes sense, since broad trends are more difficult to establish than those at the small-scale geographical level.

There is evidence for discontinuity at the European level across thousands of years, and it seems that we won't be able to escape the inevitable chore of figuring out "who went were" across all time scales, rather than relying on simplistic models of Paleolithic hunters receiving Neolithic farmers, and the two living happily ever after around the same hearths until today.


European Journal of Human Genetics , (30 November 2011) | doi:10.1038/ejhg.2011.218

Temporal differentiation across a West-European Y-chromosomal cline: genealogy as a tool in human population genetics

Maarten HD Larmuseau et al.

Abstract
The pattern of population genetic variation and allele frequencies within a species are unstable and are changing over time according to different evolutionary factors. For humans, it is possible to combine detailed patrilineal genealogical records with deep Y-chromosome (Y-chr) genotyping to disentangle signals of historical population genetic structures because of the exponential increase in genetic genealogical data. To test this approach, we studied the temporal pattern of the ‘autochthonous’ micro-geographical genetic structure in the region of Brabant in Belgium and the Netherlands (Northwest Europe). Genealogical data of 881 individuals from Northwest Europe were collected, from which 634 family trees showed a residence within Brabant for at least one generation. The Y-chr genetic variation of the 634 participants was investigated using 110 Y-SNPs and 38 Y-STRs and linked to particular locations within Brabant on specific time periods based on genealogical records. Significant temporal variation in the Y-chr distribution was detected through a north–south gradient in the frequencies distribution of sub-haplogroup R1b1b2a1 (R-U106), next to an opposite trend for R1b1b2a2g (R-U152). The gradient on R-U106 faded in time and even became totally invisible during the Industrial Revolution in the first half of the nineteenth century. Therefore, genealogical data for at least 200 years are required to study small-scale ‘autochthonous’ population structure in Western Europe.

Link

November 12, 2010

Y chromosomes in Brabant

From the paper:
The Duchy of Brabant was a historical region in the Low Countries between the 12th and 18th century and consisted of a present-day Dutch province and three contemporary Belgian provinces together with the Brussels-Capital Region. The total area is 14.425km2 with approximately 150 km between the two most remote places in Brabant. The main reason for selecting this region was the ability to obtain reliable genealogical data of the patrilineal line for each of the numerous donors living together on a small geographical scale.

The authors typed 37 Y-STRs, and 103 Y-SNPs. They write:
All individuals were correctly assigned to the main haplogroups using the Whit Atheys’ Haplogroup Predictor. In total, eight main haplogroups were observed with almost 85% of the samples belonging to haplogroup R(63%) and I(21%)(Table 1). On the lowest observed level of the phylogenetic tree 32subhaplogroups were found in the dataset, whereby nearly 70% of all samples belonged to only four subhaplogroups: R1b1b2a1(R-U106), R1b1b2a2* (R-P312*), R1b1b2a2g(R-U152) andI1*(I-M253*)


They found star-patterns in all their subhaplogroups, but uncovered some structure in their J2a* (J-M410*) chromosomes. Youngest expansion ages "were observed for E1b1b1a2(E-V13) and I1*(I-M253*), respectively 4182–5855 and 4531–6344 years ago."

Also:
a strong downward trend in the frequency of haplogroup R was observed from North to South (Table 1; Fig. S5). The difference in the frequency of R haplogroups was circa 10% between the most northern and southern part, mainly due to the downward frequency of R1b1b2a1(R-U106).
The European-wide distribution of R-U106 suggests to me that it was a Germanic lineage.

Also:
Moreover, it was even possible to detect further substructuring within subha-
plogroup J2a*(J-M410*)based on the network analysis of all single-allele Y-STR haplotypes. Nevertheless, it was remarkable that the network analyses could not differentiate all observed subhaplogroups within R1b1b2(R-M269) and I2b(I-M223). This might be due to the relatively young age of these specific subhaplogroups making it impossible to differentiate these groups based on the Y-STRs.

The extraordinary success of these subhaplogroups is one of the most interesting questions: natural selection, or demographic dominance of a recently formed population group storming Western Europe by force of numbers? Ancient Y-DNA urgently needed...

The occurrence of haplogroup Q1 in 2.6% at Kempen, and 1.59% at Mechelen is an oddity of the findings that might merit further study.

In short this might be called a "model study" of Y-chromosome variation, due to the large number of individuals (477) and markers tested.



Forensic Sci Int Genet. 2010 Oct 29. [Epub ahead of print]

Micro-geographic distribution of Y-chromosomal variation in the central-western European region Brabant.

Larmuseau MH, Vanderheyden N, Jacobs M, Coomans M, Larno L, Decorte R.

Abstract

One of the future issues in the forensic application of the haploid Y-chromosome (Y-chr) is surveying the distribution of the Y-chr variation on a micro-geographical scale. Studies on such a scale require observing Y-chr variation on a high resolution, high sampling efforts and reliable genealogical data of all DNA-donors. In the current study we optimised this framework by surveying the micro-geographical distribution of the Y-chr variation in the central-western European region named Brabant. The Duchy of Brabant was a historical region in the Low Countries containing three contemporary Belgian provinces and one Dutch province (Noord-Brabant). 477 males from five a priori defined regions within Brabant were selected based on their genealogical ancestry (known pedigree at least before 1800). The Y-haplotypes were determined based on 37 Y-STR loci and the finest possible level of substructuring was defined according to the latest published Y-chr phylogenetic tree. In total, eight Y-haplogroups and 32 different subhaplogroups were observed, whereby 70% of all participants belonged to only four subhaplogroups: R1b1b2a1 (R-U106), R1b1b2a2* (R-P312*), R1b1b2a2g (R-U152) and I1* (I-M253*). Significant micro-geographical differentiation within Brabant was detected between the Dutch (Noord-Brabant) vs. the Flemish regions based on the differences in (sub)haplogroup frequencies but not based on Y-STR variation within the main subhaplogroups. A clear gradient was found with higher frequencies of R1b1b2 (R-M269) chromosomes in the northern vs. southern regions, mainly related to a trend in the frequency of R1b1b2a1 (R-U106).

Link

September 19, 2009

Genetics and environment contributions to craniofacial phenotypes of Belgians

Hum Biol. 2008 Dec;80(6):637-54.

Contribution of genetics and environment to craniofacial anthropometric phenotypes in Belgian nuclear families.

Jelenkovic A, Poveda A, Susanne C, Rebato E.

In this study we estimate relative genetic and environmental influences on head-related anthropometric phenotypes. The subject group consisted of 119 nuclear families living in Brussels, Belgium, and included 238 males and 236 females, ages 17 to 72 years. Two factor analyses with varimax rotation (the first one related to facial measurements and the second one to overall head morphology) were used to analyze 14 craniofacial size traits. The resulting four synthetic traits [HFCF, VFCF, HDF1, and HDF2-horizontal (breadth) and vertical (height) facial factors and two head horizontal (breadth) factors, respectively] were used as summary variables. Maximum heritabilities (H2) were estimated for all studied traits, and variance components analysis was applied to determine the contribution of genetics and environment on the four craniofacial factors. In addition, we examined the covariations between the face (HFCF and VFCF) and head-related factors (HDF1 and HDF2), separately. Quantitative genetic analysis showed that HFCF, VFCF, HDF1, and HDF2 variation was appreciably attributable to additive genetic effects, with heritability (h2) estimates of 67.62%, 54.97%, 70.76%, and 65.05%, respectively. The three variance components reflecting a shared familial environment were nonsignificant for these four phenotypes. Bivariate analysis revealed significant additive and residual correlations for both pair of traits. The results confirm the existence of a significant genetic component determining the four craniofacial synthetic traits, and common genetic and environmental effects shared by the two face-related phenotypes and by the head-related ones.

Link

November 11, 2008

Belgian Spy Neanderthals 36,000 years BP old

American Journal of Physical Anthropology 10.1002/ajpa.20954

New data on the late Neandertals: Direct dating of the Belgian Spy fossils

Patrick Semal et al.

Abstract

In Eurasia, the period between 40,000 and 30,000 BP saw the replacement of Neandertals by anatomically modern humans (AMH) during and after the Middle to Upper Paleolithic transition. The human fossil record for this period is very poorly defined with no overlap between Neandertals and AMH on the basis of direct dates. Four new 14C dates were obtained on the two adult Neandertals from Spy (Belgium). The results show that Neandertals survived to at least ≈ 36,000 BP in Belgium and that the Spy fossils may be associated to the Lincombian-Ranisian-Jerzmanowician, a transitional techno-complex defined in northwest Europe and recognized in the Spy collections. The new data suggest that hypotheses other than Neandertal acculturation by AMH may be considered in this part of Europe.

Link

October 18, 2008

Dog domestication in the Aurignacian (c. 32kyBP)

From the paper:
Interestingly, when compared to extant wolf and dog sequences available from GenBank, all seven haplotypes found in the Pleistocene samples were found to be unique and not described to date. This result is remarkable when considering the large number of wolf (~160) and particularly dog sequences (> 1,000 from almost all breeds known today) available in Genbank.

This may be consistent with selection affecting mtDNA since the Paleolithic, with recent dogs and wolves being descended from a small subset of the Paleolithic mtDNA diversity. Also from the paper:
Compared to wolves, ancient dogs exhibit a shorter and broader snout (Lawrence, 1967; Olsen, 1985; Sablin and Khlopachev, 2002). All Palaeolithic dogs in our study conform to this pattern.

...

As demonstrated above, the Palaeolithic dogs in our data set are very uniform in their skull shape. Even the Goyet dog, with an age of c. 31,700 BP, is not intermediate in form between the fossil wolves and the prehistoric dogs, but conforms to the configuration of the other Palaeolithic dogs, which are approximately 18,000 years younger. The abrupt appearance of a dog, much older than the Eliseevich I dogs, the oldest recognized dogs so far, suggest that the domestication process must have been quite rapid (cf. Crockford, 2000a).

Was the dog the very first animal to be domesticated by man, truly his "oldest friend"? I would not be surprised if our relationship with dogs stretches even further to the past. Dogs are such useful helpers in a hunting culture, that their value must have been recognized from early on.

Journal of Archaeological Science doi:10.1016/j.jas.2008.09.033

Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes

Mietje Germonpré et al.

Abstract

Using multivariate techniques, several skulls of fossil large canids from sites in Belgium, Ukraine and Russia were examined to look for possible evidence of the presence of Palaeolithic dogs. Reference groups constituted of prehistoric dogs, and recent wolves and dogs. The fossil large canid from Goyet (Belgium), dated at c. 31,700 BP is clearly different from the recent wolves, resembling most closely the prehistoric dogs. Thus it is identified as a Palaeolithic dog, suggesting that dog domestication had already started during the Aurignacian. The Epigravettian Mezin 5490 (Russia) and Mezhirich (Ukraine) skulls are also identified as being Palaeolithic dogs. Select Belgian specimens were analysed for mtDNA and stable isotopes. All fossil samples yielded unique DNA sequences, indicating that the ancient Belgian large canids carried a substantial amount of genetic diversity. Furthermore, there is little evidence for phylogeographic structure in the Pleistocene large canids, as they do not form a homogenous genetic group. Although considerable variation occurs in the fossil canid isotope signatures between sites, the Belgian fossil large canids preyed in general on horse and large bovids.

Link