Showing posts with label Aurignacian. Show all posts
Showing posts with label Aurignacian. Show all posts

May 02, 2016

Neandertal ancestry, going, going, ..., gone (?)

A deluge of new data from Upper Paleolithic Europe will give us all a lot to think about. It is incredible that Neandertal ancestry seems to have decreased over time in Europe (Oase1 is off-cline with lots of extra Neandertal ancestry from a recent genealogical Neandertal in the family tree). The functional form of the decrease seems pretty well approximated as linear.

The authors write:
Using one statistic, we estimate a decline from 4.3–5.7% from a time shortly after introgression to 1.1–2.2% in Eurasians today (Fig. 2).
This is remarkable because it shows  that most of the Neandertal ancestry of the earliest AMH in Europe was gone by the Mesolithic. It really seems that Neandertal genes were bred out of the gene pool over time. Will this trend continue into the future? Perhaps only minute traces of Neandertal DNA will remain in humans in 10,000 more years. Some of Neandertal DNA may yet prove to be neutral or beneficial, so at the limit the percentage may be more than zero. Nonetheless, the historical trend does suggest that modern humans inherited mostly genetic garbage from Neandertals and evolution is more than halfway through the process of getting rid of it.

As a corollary, there may have been other episodes of archaic admixture that are no longer detectable. Perhaps our modern human lineage has repeatedly admixed with other species, but traces of those admixtures are long gone by the action of natural selection. The reason for our relative homogeneity as a species may not be that we avoided intermixing with others, but that, sadly, most others had not much that was beneficial to offer to our ancestors.

Nature (2016) doi:10.1038/nature17993

The genetic history of Ice Age Europe

Qiaomei Fu et al.

Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000–7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.

Link

May 03, 2015

Modern humans, not Neandertals made the Proto-Aurignacian

Science DOI: 10.1126/science.aaa2773

The makers of the Protoaurignacian and implications for Neandertal extinction

S. Benazzi et al.

The Protoaurignacian culture is pivotal to the debate about the timing of the arrival of modern humans in Western Europe and the demise of Neandertals. However, which group is responsible for this culture remains uncertain. We investigated dental remains associated with the Protoaurignacian. The lower deciduous incisor from Riparo Bombrini is modern human, based on its morphology. The upper deciduous incisor from Grotta di Fumane contains ancient mitochondrial DNA of a modern human type. These teeth are the oldest human remains in an Aurignacian-related archeological context, confirming that by 41,000 calendar years before the present, modern humans bearing Protoaurignacian culture spread into Southern Europe. Because the last Neandertals date to 41,030 to 39,260 calendar years before the present, we suggest that the Protoaurignacian triggered the demise of Neandertals in this area.

Link

September 28, 2014

43,500-year old Aurignacian north of the Alps

PNAS doi: 10.1073/pnas.1412201111

Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment

Philip R. Nigst et al.

The first settlement of Europe by modern humans is thought to have occurred between 50,000 and 40,000 calendar years ago (cal B.P.). In Europe, modern human remains of this time period are scarce and often are not associated with archaeology or originate from old excavations with no contextual information. Hence, the behavior of the first modern humans in Europe is still unknown. Aurignacian assemblages—demonstrably made by modern humans—are commonly used as proxies for the presence of fully behaviorally and anatomically modern humans. The site of Willendorf II (Austria) is well known for its Early Upper Paleolithic horizons, which are among the oldest in Europe. However, their age and attribution to the Aurignacian remain an issue of debate. Here, we show that archaeological horizon 3 (AH 3) consists of faunal remains and Early Aurignacian lithic artifacts. By using stratigraphic, paleoenvironmental, and chronological data, AH 3 is ascribed to the onset of Greenland Interstadial 11, around 43,500 cal B.P., and thus is older than any other Aurignacian assemblage. Furthermore, the AH 3 assemblage overlaps with the latest directly radiocarbon-dated Neanderthal remains, suggesting that Neanderthal and modern human presence overlapped in Europe for some millennia, possibly at rather close geographical range. Most importantly, for the first time to our knowledge, we have a high-resolution environmental context for an Early Aurignacian site in Central Europe, demonstrating an early appearance of behaviorally modern humans in a medium-cold steppe-type environment with some boreal trees along valleys around 43,500 cal B.P.

Link

April 14, 2014

Chronology of the earliest Upper Paleolithic in northern Iberia (Wood et al. 2014)

From a press release:
The main conclusion -"the scene of the meeting between a Neanderthal and a Cro-magnon does not seem to have taken place on the Iberian Peninsula"- is the same as the one that has been gradually reached over the last three years by different research groups when studying key settlements in Great Britain, Italy, Germany and France. "For 25 years we had been saying that Neanderthals and early humans lived together for 8,000-10,000 years. Today, we think that in Europe there was a gap between one species and the other and, therefore, there was no hybridation, which did in fact take place in areas of the Middle East," explained Arrizabalaga. The UPV/EHU professor is also the co-author of a piece of research published in 2012 that puts back the datings of the Neanderthals. "We did the dating again in accordance with the ultrafiltration treatment that eliminates rejuvenating contamination, remains of the Mousterian, the material culture belonging to the Neanderthals from sites in the south of the Peninsula. Very recent dates had been obtained in them -up to 29,000 years- but the new datings go back to 44,000 years older than the first dates that can be attributed to the Cro-Magnons," explained the UPV/EHU professor.

Journal of Human Evolution Volume 69, April 2014, Pages 91–109

The chronology of the earliest Upper Palaeolithic in northern Iberia: New insights from L'Arbreda, Labeko Koba and La Viña

R.E. Wood et al.

Since the late 1980s, northern Iberia has yielded some of the earliest radiocarbon dated Aurignacian assemblages in Western Europe, probably produced by anatomically modern humans (AMHs). This is at odds with its location furthest from the likely eastern entry point of AMHs, and has also suggested to some that the Châtelperronian resulted from cultural transfer from AMHs to Neanderthals. However, the accuracy of the early chronology has been extensively disputed, primarily because of the poor association between the dated samples and human activity. Here, we test the chronology of three sites in northern Iberia, L'Arbreda, Labeko Koba and La Viña, by radiocarbon dating ultrafiltered collagen from anthropogenically modified bones. The published dates from Labeko Koba are shown to be significant underestimates due to the insufficient removal of young contaminants. The early (c.44 ka cal BP [thousands of calibrated years before present]) Aurignacian chronology at L'Arbreda cannot be reproduced, but the reason for this is difficult to ascertain. The existing chronology of La Viña is found to be approximately correct. Together, the evidence suggests that major changes in technocomplexes occurred contemporaneously between the Mediterranean and Atlantic regions of northern Iberia, with the Aurignacian appearing around 42 ka cal BP, a date broadly consistent with the appearance of this industry elsewhere in Western Europe.

Link

March 06, 2014

Chauvet cave art not the work of earliest Europeans

Many of you may have watched Cave of Forgotten Dreams, a great documentary about the paintings of Chauvet cave in France. It now turns out that the extraordinary art preserved in the cave may not date to ~36,000 years but rather to the Gravettian or Solutrean period.

 L'Anthropologie Available online 11 February 2014

New investigations into the cultural and stylistic identity of the Chauvet cave and its radiocarbon dating

Jean Combiera, Guy Jouve

The discovery of Chauvet cave, at Vallon-Pont-d’Arc (Ardèche), in 1994, was an important event for our knowledge of palaeolithic parietal art as a whole. Its painted and engraved figures, thanks to their number (425 graphic units), and their excellent state of preservation, provide a documentary thesaurus comparable to that of the greatest sites known, and far beyond what had already been found in the group of Rhône valley caves (Ardèche and Gard). But its study – when one places it in its natural regional, cultural and thematic framework – makes it impossible to see it as an isolated entity of astonishing precocity. This needs to be reconsidered, and the affinities that our research has brought to light are clearly incompatible with the very early age which has been attributed to it. And if one extends this examination to the whole of the Franco-Cantabrian domain, the conclusion is inescapable: although Chauvet cave displays some unique characteristics (like every decorated cave), it belongs to an evolved phase of parietal art that is far removed from the motifs of its origins (known from art on blocks and on shelter walls dated by stratigraphy to the Aurignacian, in France and Cantabrian Spain). The majority of its works are therefore to be placed, quite normally, within the framework of the well-defined artistic creations of the Gravettian and Solutrean. Moreover, this phase of the Middle Upper Palaeolithic (26,000–18,000) coincides with a particularly intensive and diversified local human occupation, unknown in earlier periods and far less dense afterwards in the Magdalenian. A detailed critique of the treatment of the samples subjected to AMS radiocarbon dating makes it impossible to retain the very early age (36,000 cal BP) attributed by some authors to the painted and engraved figures of Chauvet cave.

Link

September 16, 2013

Aurignacian rock art from Altxerri B cave

Journal of Human Evolution doi:0.1016/j.jhevol.2013.08.001

Not only Chauvet: Dating Aurignacian rock art in Altxerri B Cave (northern Spain)

C. González-Sainz et al.

The discovery and first dates of the paintings in Grotte Chauvet provoked a new debate on the origin and characteristics of the first figurative Palaeolithic art. Since then, other art ensembles in France and Italy (Aldène, Fumane, Arcy-sur-Cure and Castanet) have enlarged our knowledge of graphic activity in the early Upper Palaeolithic. This paper presents a chronological assessment of the Palaeolithic parietal ensemble in Altxerri B (northern Spain). When the study began in 2011, one of our main objectives was to determine the age of this pictorial phase in the cave. Archaeological, geological and stylistic evidence, together with radiometric dates, suggest an Aurignacian chronology for this art. The ensemble in Altxerri B can therefore be added to the small but growing number of sites dated in this period, corroborating the hypothesis of more complex and varied figurative art than had been supposed in the early Upper Palaeolithic.

Link

September 12, 2013

ESHE 2013 abstracts

219 pages worth of abstracts from the upcoming meeting of the European Society for the study of Human Evolution (pdf).

I will post some excerpts:

Evolutionary History And Biological Diversity Of Homo Sapiens In Southeast Asia: Contour Shape Analysis Of Modern Human Upper Molars:


The evolutionary history and the pattern of biological diversity of modern humans in Southeast Asia has long been regarded as resulting of two major migrations waves. In this hypothesis it is generally considered that a first wave of migration (generally referred as “Australo-Melanesians”) reached Australia around 60000 BP while the second wave (often referred as “Mongoloids”) is correlated to a demic diffusion of the Neolithic from a Southeast China homeland which started around mid-Holocene. ... Our results also bring very interesting perspectives concerning the detection of the signature of a possible Denisovan admixture in the phenotype of modern human populations. Indeed, past and recent modern human groups which are hypothetically sharing Denisovan ancestry have closer phenetic affinities with each other than with other populations.

Podium Presentation: Session 9, Sa (14:20) A fine scale survey of the worldwide similarity between humans and archaic hominids and its implication on the proposed admixture scenario 
Since the publications of Green et al. 2010 and Reich et al. 2010, several investigations have followed suit addressing the question regarding anatomically modern human and archaic hominin admixture. The genetic analyses of the Neanderthal draft genome and the Denisova genome concluded that these archaic hominins made a 1-4% contribution to non-African populations and 4-6% contribution to Melanesian populations, respectively. The argument of whether the observed genetic similarity is consistent with admixture or ancient substructure is still under debate. While observations have been consistent with an admixture scenario of Neanderthals and the ancestors of non-Africans coming into contact 50 80 kya in the Middle East, the lack of power in these experiments falter in providing reliable results. Here we look at the relationship between AMH and these archaic hominins on a fine-scale level by using several methods (including revised D-statistic) on the Neanderthal draft genome, Denisova high-coverage genome, and a collection of published and unpublished genotype and sequence data. We use our findings to clarify the proposed admixture scenario as well as discuss new findings in newly analyzed comparisons of African, South Asian and American populations with archaic hominins, Neanderthal and Denisova. Our results shed light on understanding the observed genetic similarity within and between humans (African and non-African) and archaic hominins, particularly in relevance to the admixture versus ancient substructure scenarios. 

How modern are the earliest Homo sapiens? 
Previous research (reviewed in Trinkaus, 2005) has suggested that the African and western Asian contemporaries of Neandertals, generally considered to be the earliest Homo sapiens, are not particularly modern looking in their cranial anatomy. Here we test whether the dental morphological signal agrees with this assessment. We examined and recorded dental morphological variation in the earliest H. sapiens and asked: how modern are they dentally? We used a Bayesian statistical approach to classifying individuals into two possible groups based on dental non-metric traits. e classification was based on dental trait frequencies and sample sizes for two known samples of 120 Neandertals and 106 Upper Paleolithic H. sapiens individuals. A cross- validation test of these individuals resulted in a correct classification rate of 95%, which is even better than the results of a previous study using the same method based on fewer individuals (Bailey et al 2009). Our early H. sapiens sample included 41 individuals from Southern Africa (Die Kelders, Klasies River Mouth and Equus Cave), Northern Africa (Temara, El Harhoura, Dar es Soltan) and the Levant (Qafzeh, Skhul). We treated our early H. sapiens individuals as unknown and calculated the probability that each belonged to either the Upper Paleolithic or Neandertal sample. While understanding that technically these individuals did not belong to either group, we hypothesized that if the earliest H. sapiens were already dentally modern then, when forced into a group, they should fall into the Upper Paleolithic H. sapiens group. We also hypothesized that if there had been significant admixture in the Levant during the initial dispersal out of Africa - as has been sometimes proposed based on paleontological - and more recently on genetic - evidence (Green et al 2010) that these samples would have the largest proportion of individuals classified as Neandertal. Our results indicated that this was not the case. While a surprising number (27%) of early H. sapiens did classify as Neandertal, the smallest proportion of these came from the Levant (7% - one out of 14 individuals). The African sample was more of a mixed bag. None of the individuals from Die Kelders or Klaises River Mouth classified as Neandertal, while four out of five of the individuals from Equus Cave did. Moreover, 6 out of 13 (46%) of the Northern African individuals were classified as Neandertal. An inspection of the individual specimens that classified as Neandertals revealed that in most cases it is the predominance of primitive features, rather than derived Neandertal traits, that is driving the classification. We conclude (1) by the time the earliest H. sapiens dispersed from Africa they had already attained a more-or-less modern dental pattern; (2) in the past, as is the case today, Late Pleistocene Africans were not a homogeneous group, some retained primitive dental traits in higher proportions than others. Furthermore, we acknowledge that while our method is an excellent tool for discriminating between Upper Paleolithic H. sapiens and Neandertals, it may not be appropriate for testing Neandertal H. sapiens admixture because all traits (primitive and derived) are weighed equally. 

The potential for catastrophic impact of the Campanian Ignimbrite (CI) tephra on human evolution: new data from the Lower Danube loess steppe:
Here we investigate an unexpectedly thick CI tephra deposit at Urluia in the southeast Romanian loess steppe, 1200 km from the super-eruption vent in Italy. Existing models suggest that the CI tephra thickness might reach a maximum 5-10 cm in Eastern Europe; the Urluia ash deposit is up to 100 cm thick. Additional, recently discovered Lower Danube sites also reveal substantially thicker than modelled CI ash beds. 
Radiocarbon dating the extinction of European Neanderthals

The transitional industries and their makers:
The demonstration of modern settlements pre-dating the earliest Aurignacian in Europe has important implications (Hublin 2012). It is consistent with a patchy pattern of modern colonization, with some significant chronological overlap between Neandertals and modern humans on a continental scale. In this model innovations observed in the Neandertal world around or after 50 ka cal BP may have resulted from cultural diffusion triggered by these influxes of populations into western Eurasia.
The Upper Paleolithic of the Ikh Tulberin Gol (Northern Mongolia): new excavations at the Tolbor 16 open-air site:
Numerous questions remain regarding the timing and the context of Upper Paleolithic emergence in Northeast Asia. Available data allow the recognition of a form of Initial Upper Paleolithic (IUP) (Brantingham et al, 2001) documented in the Altai circa 45-40 ka uncal BP (Goebel et al., 1993, Derevianko et al, 2000, Zwyns et al., 2012), in the Cis- and Transbaikal around 40 ka uncal BP (Lbova, 2008) ...
New data on the radiocarbon chronology of the Stretleskayan at Kostenki (Voronezh, Central Russia) :
It concerns cultural layer III at Kostenki 12 and cultural layer V at Kostenki I, respectively previously dated 36,280±360 and 34,900 ±350 BP in Groningen (Damblon et al., 1996). ... Remaining material of the charcoal sample from cultural layer III at Kostenki 12, previously dated 36,280 ±250 BP, was also submitted for dating to Oxford with ABOx-SC pretreatment. the results show that the two Groningen dates and the three Oxford dates are in good agreement and fit within a time interval of 1 millennium, but provide ages several millennia older than the ages obtained previously. Taking into account this new chronology, the appearance of the Stretleskayan at Kostenki will be compared with the chronological background of the Early Aurignacian, Szeletian and Bohunician occurrences in the MiddleDanube sequence, also based on ABA and ABOx-SC cross-dating (Haesaerts et al., 2013). 

Two Waves of Paleolithic Settlers Migrations to North West Beringia in Pleistocene End (End of Karginsky Interstadial) :
Way of 1st wave is marked by sites Afontova Gora V, Ust-Kova on Angara, than along Lena river up to Central Ykut plain, turn Aldan (Ikhine I etc), than round Kolyma plain to Chukotka, where they left abt 30 Ka Orlovka II site in North of West and Kymyneykey site in North of East Chukotka. In Aldan basin migration slowly down. Its reason could be glaciation of Verkhoyansk and Chersky ranges. During this delay “technical re-equipment” happened of migrations. Orlovka II and Kymyney artefacts are clear Aldan. 2nd wave migration was abt 29-28 Ka during final karginsky (middle: würm, wisconsin) warming, when paleoclimate along all northern outskirts of Asia was like to recent or more warm (Drozdov and Laukhin, 2010). Migrants of 2nd wave went to Yana mouth and left here site. Artifacts of this site don’t have Aldanian traditions, but are very close to Yeniseisk. There were little of favorable niches to North of South Mountain Belt; and their demographic capacity were nor big. 
Modern human dispersal into Eurasia: Preliminary results of the multi-disciplinary project on the replacement of Neanderthals by modern humans (RNMH)
Both the chronometric dating and the geographic distribution of archaeological entities indicate that modern human populations equipped themselves with blade products based on the Levallois method, a technology that emerged in North Africa (Taramsan) around 60 ka and then dispersed into the Eastern Mediterranean Levant (Emiran) between 49 and 48 ka. Blade technology further expanded into Eastern and Central Europe (Bachokirian and Bohunician) between 48 and 45 ka and into Southern Siberia (Kara-Bom horizons 6 and 5) at around 47 ka. The rapid expansion of modern humans into Western and Eastern Eurasia followed by the demise of archaic populations in these regions may imply technological and cognitive advantages of modern humans. 

September 22, 2012

ESHE 2012 abstracts

Some abstracts of interest from the European Society for the study of Human Evolution 2012 meeting (pdf). To avoid making this too long, I will just post the titles and the most relevant quotes. You can read the abstracts in the linked pdf for authors names and more information.


Neandertal and Denisovan Genomes from the Altai 
Susanna Sawyer  et al.
In 2010 a draft genome sequence was determined from a small finger bone found in Denisova Cave in southern Siberia. Its analysis revealed that it derives from an individual who belonged to a population related to, but distinct from, Neandertals. A molar has also been described from Denisova Cave and has shown to carry an mtDNA genome closely related to that of the finger bone.  We have recently determined the DNA sequence of the Denisova genome to a quality similar to present-day human genomes. We have also retrieved a complete mitochondrial genome and nuclear DNA sequences from an additional molar found in Denisova Cave. Furthermore, we have determined a high-quality nuclear genome from a pedal phalanx found in Denisova Cave in 2010. We show that the pedal phalanx derived from a Neandertal and thus that Neandertals as well as Denisovans have been present in the cave. We will discuss the genetic history of Denisovans as well as Neandertals in light of these new genome sequences. 

The discovery of a Neandertal genome from Denisova cave is certainly interesting. I have previously commented that:
If Vindija and Denisova, two caves less than 5,000km apart were home to people more divergent from each other than any two humans are today, it's strange to think that only "modern humans" inhabited Africa at the same time.
Now, it appears that Neandertals and Denisovans were present (when?) not only 5Mm apart, but literally on the same spot. Much later, during the Neolithic we see very differentiated humans co-existing in Europe. And, we get archaic hominins in Africa long after the appearance of anatomically modern humans there. I think the evidence is looking good for my hypothesis that regional human populations have recently gotten more similar over time through extensive admixture between divergent hominin groups, rather than that they became more dissimilar over time  through tree-like divergence.

On the same topic, here is more evidence for Neandertal presence in the Altai:

A Neanderthal mandible fragment from Chagyrskaya Cave (Altai Mountains, Russian Federation)
Both the mandible and the dentition preserve numerous derived Neanderthal traits: among else a posteriorly placed mandibular foramen, an oblique mylohyoid line, an asymmetrical P4 and continuous mid-trigonid crests on the M1 and M2. ... Ongoing ancient DNA analyses of the hominin remains from Chagyrskaya cave and absolute dates for the site will hopefully help to clarify the origin of the Altai Neanderthals, and their relationship with the Denisovans.

An hypothesis for the phylogenetic position of Homo floresiensis
Our cladistic analysis places H. floresiensis unequivocally as part of a clade with H. habilis
Who are you calling ”modern”? An assessment of the dental morphology and metrics of Homo sapiens

Although dental reduction has long been cited as a derived feature of H. sapiens, our data indicate this claim may be no longer tenable ... the single metrical assessment that groups all H. sapiens (early, Upper Paleolithic and recent) apart from other taxa is the ratio between mandibular:maxillary crown areas.  the results of our study are important for assessing recent claims of great antiquity for H. sapiens outside of Africa
Neanderthal in Malthusian demographic trap

It can be hypothesized that the demography of the Neanderthal metapopulation, living under conditions where extreme environmental instability with short periods was the norm, was primarily stagnant,
with frequent bottlenecks and episodes of decline.
 A New Framework for the Upper Paleolithic of Eastern Europe

The results of field and laboratory research during the past decade require a new classificatory framework for the Upper Paleolithic in Eastern Europe. It is now apparent that people making artifacts assigned to the Ahmarian industry occupied both the southern and northern slopes of the Caucasus Mountains (i.e., Ortvale Klde, Layer 4d; Mezmaiskaya Cave, Layer 1C). Their sites probably indicate a separate movement of anatomically modern humans (AMH) from the Near East directly into Eastern Europe, establishing an independent line of development during the earlier Upper Paleolithic that parallels the Proto-Aurignacian and Aurignacian sequence in Western and Central Europe. this East European industry is most fully represented at the Kostenki-Borshchevo sites on the Don River before 40,000 cal BP (e.g., Kostenki 14, Layer IVb). It is followed by a closely related industry, also characterized by bladelet production, that is dated to the interval between 40,000 and 30,000 cal BP in Crimea and the East European Plain. The proposed new framework reflects recognition of these distinctive East European entities and of two environmental events that had significant impacts on human settlement in Eastern Europe: (1) the Campanian Ignimbrite (CI) volcanic eruption (40,000 cal BP); and (2) the Last Glacial Maximum (LGM) ( 25,000 cal BP). It has been suggested that the early Upper Paleolithic (EUP) industry present in Eastern Europe before 40,000 cal BP should be labeled an eastern variant of the contemporaneous Proto-Aurignacian of Mediterranean Europe. However, given the separate movement of people from the Near East via the Caucasus Mountains, and independent development of the East European EUP, this industry is more appropriately termed “Proto-Gravettian.” The younger bladelet industry, which includes assemblages at Buran-Kaya III (Layer 6-1), Mira (Layer II/2), Kostenki 8 (Layer II), and probably Shlyakh (Layers 4C, 6), may be termed “Early Gravettian” to distinguish it from the classic Gravettian industry that dates to less than 30,000 cal BP (e.g., Avdeevo, Zaraisk).The upper temporal boundary of the Proto-Gravettian corresponds to the CI eruption (40,000 cal BP), while the classic Gravettian of the East European Plain appears to have been effectively terminated by the LGM ( 25,000 cal BP). Several sites that date to the 40,000–30,000 cal BP interval (e.g., Kostenki 1, Layer III) contain elements that suggest a connection with the Aurignacian technocomplex of Western-Central Europe. These assemblages may be placed into the category of “Eastern Aurignacian,” which reflects differences in content with the West and Central European sites. The apparent spread of this industry into Eastern Europe from Central Europe may be related to the impact of the CI eruption on portions of the East European Plain. 
 Conflicting dates for the Late Aterian
First at the huge Ifri n’Ammar sites, TL dates have indicated 80,000 years for the Late Middle Palaeolithic/Aterian levels. Our new C14 dates yield 35,000 BP for exactly the same levels. At the “grotte des Contrebandiers”, formerly dated at 28,000 BP by Debenath and his team, is now dated at 100,000 years by new TL dates. As starting points, this kind of methodological contradiction should be confronted, understood and resolved.
 The Rio Secco Cave in the North Adriatic Region, Italy. A new context for investigating the Neanderthal demise and the settllement of Anatomically Modern Humans
A sequence of several thin layers dated to 46.0–42.1ky Cal BP represents the final Mousterian.
The Dhofar Nubian Tradition: an enduring Middle Stone Age technocomplex in southern Arabia

Between 2010 and 2012, the Dhofar Archaeological Project has located and mapped 260 Nubian Complex occurrences across the Nejd Plateau of southern Oman. Diagnostic Nubian artifacts werefound cemented in fluvial sediments at the site of Aybut Al Auwal in Dhofar, with two OSL dates around 106 ka BP; hence, roughly contemporaneous with the African Nubian Complex (Rose et al. 2011). Many of these lithic assemblages, such as that from Aybut al Auwal, are technologically homologous to the Late Nubian Industry found in northeast Africa, sensu stricto, while others may represent local facies of the greater “Afro-Arabian Nubian Technocomplex.” This presentation describes the various reduction strategies encountered at a sample of Nubian Complex sites from Oman, explores inter-assemblage variability, and begins to articulate technological units within the “Dhofar Nubian Tradition.” To achieve this aim, we have developed an analytical scheme with which to describe technological variability among Nubian Levallois reduction strategies in both Africa and Arabia. Our analysis indicates at least two distinct Nubian industries. The first, which we refer to as the “Classic Dhofar Nubian,” is virtually identical to Late Nubian Industry from the Lower Nile Valley and Red Sea Hills in Egypt. Thee subsequent group of assemblages in Dhofar, called the “Mudayyan,” exhibits a technological shift toward diminutive Nubian Levallois cores and that, recurrent bidirectional cores with opposed, faceted striking platforms. We interpret this evidence to indicate an enduring, local Nubian tradition in Dhofar that is ultimately rooted in the African Nubian Complex. 
From Late Mousterian to Evolved Aurignacian: New evidence for the Middle-to-Upper Paleolithic transition in Mediterranean Spain
Combined, the evidence from CA and FDM indicates that, in chronostratigraphic terms, the Middle-to-Upper Paleolithic transition in Murcia consists of the replacement of a Late Mousterian by an Evolved Aurignacian and occurred some time during the 38th millennium cal BP




August 15, 2012

The genetic history of Europeans (Pinhasi et al. 2012)

This is a nice paper with extensive references on the topic of European origins. Two of its co-authors, Joachim Burger, and Ron Pinhasi are leading a couple of exciting new ancient DNA projects that will probably flood us with interesting new data in the years to come.

From the paper:
Human evolutionary history includes all the complex demographic, natural selection, and stochastic processes that have shaped our species. Despite the limitations of genetic and archaeological data to inform on all the details of human evolution, they constitute an irreplaceable source of information to appraise the key episodes that are likely to have had major impacts on patterns of genetic, morphological, and cultural variation. When considering AMH in Europe, three such critical periods are apparent: (i) the expansion of AMH out of Africa and their colonization of Europe approximately 45 000 years ago (45 ka), (ii) the last glacial maximum (LGM) and the formation of uninhabitable areas in Europe between 27 and 16 ka, and (iii) the arrival of Neolithic culture in southeast Europe and its spread throughout the rest of the continent between 9 and 5 ka. Here we review genetic evidence describing these major demographic episodes in the context of archaeological and chronological data. 
I have postulated that there was at least one important post-5ka event affecting Europe. But, in order to understand how events played out before 5ka and the present, we must first understand the background of what was taking place in Europe before 5ka.

On the earliest settlement of Europe:
Until recently, the earliest date for the first appearance of AMH in Europe had been set to around 42 to 43 ka solely based on their proposed association with Aurignacian artifacts (Table 1) [5,6]. New direct radiocarbon dates of fossils support this view and indicate that AMH appeared in Europe by 44.2– 41.5 calibrated (cal.) ka BP at Kent’s Cavern in southern England [6] and by 45–43 cal. ka BP in Grotta del Cavallo, Italy [7], whereas Neanderthals did not survive in most of Europe and the Caucasus after 39 cal. ka BP [8,9].
These dates are so close to the MP/UP transition in the Levant (49-46 cal ky BP), with the Aurignacian appearing shortly thereafter in both Central Europe and Italy. It would appear that modern humans swiftly colonized Europe after they made the crucial UP leap. Of course, in my opinion, this population was ultimately descended from inhabitants of Arabia, escaping post-70ka climatic deterioration and pre-100ka with the archaeologically attested Nubian Complex. But, in any case, it is probably the last crucial step, when humans went into warp drive post-50ka that led to the first modern human colonization of Europe and ultimately the extinction (or absorption?) of the Neandertals.

But, the early colonizers were in for a rough patch of climate that last for several millennia, making whole parts of Europe uninhabitable, and allowing few ones to survive in the south of the continent:
After the disappearance of the Neanderthals and particularly during the LGM, the northern parts of Europe were covered by ice sheets, leaving humans to survive in poorly resourced environments [10,11]. Parts of northern Europe were either completely abandoned [12] or sparsely populated [13]. The archaeological record of this period catalogs a complex series of interrelated material cultures that vary in their geographic ranges and temporal durations (Table 1). Spatial patterns of material culture change have been interpreted as indicating colonization of regions up to 52 degrees N latitude during the Gravettian, followed by partial or complete retreat of most northern populations by 24 ka, and recolonization of these regions by 20–16 ka, with some continuity of occupation in more southern latitudes [14]. However, the extent to which material cultures correspond to distinct human populations, and to which their distribu- tion changes through time correspond to demographic pro- cesses, remains unclear. 
The following table presents a very useful summary of archaeological developments in west Eurasia:

So far, we have substantial autosomal data of modern humans only from the Mesolithic onwards (Iberia), but also mtDNA from much older specimens of the Gravettian in Italy and Russia.

Apparently, other people are looking to extract ancient genomic DNA from older remains as well:
A group led by evolutionary geneticist Johannes Krause of the University of Tubingen, Germany, is trying to remove and reassemble nuclear DNA from the bones of roughly 20,000-year-old people in Europe. If successful, that effort will provide the first look at whether Stone Age humans carried more Neandertal genes than people today do. “It’s a completely open question whether more interbreeding occurred in the past than what we’ve found so far,” Krause says.
But, let's see where things stand now.

Ancient mtDNA sequences recovered from three Upper Paleolithic and 14 Mesolithic and Neolithic hunter-gatherers all belong to the mtDNA haplogroup U [48], currently found at frequencies between 1 and 7% in most modern European populations, but at up to 20% in Baltic populations and around 40% in Saami. Interestingly, almost all pre-Neolithic hunter-gatherers from Central and Northeastern Europe sequenced to date, and the majority of European post-Neolithic hunter-gatherers, carry U-type mtDNA [48,49] (Figure 1a,c). There are three exceptions: two Italian individuals with N* and pre-HV types [50], and one from Sweden [46]; the latter dating to the late Neolithic and possibly being the result of an admix- ture event with incoming farmers. In all other hunter- gatherer samples, the now common mtDNA lineages H, T, K, and J are absent, suggesting that these mtDNA lineages were introduced during the Neolithic period. 

The mtDNA evidence is indeed the strongest argument for large-scale population replacement during the Neolithic, a scenario which has found support by the sequencing of Neolithic hunter-gatherers from Gotland Sweden and Mesolithic ones from Iberia.

The authors note that while early farming groups largely lacked mtDNA haplogroup U, the later ones possessed it to some extent:

Maps showing Europe in times slices and depicting the locations from which ancient mitochondrial DNA (mtDNA) sequences were retrieved. Squares represent hunter-gatherer individuals and circles represent farming individuals. Lineages belonging to the U-clade are shown in red. Other lineages are shown in yellow. (a) Paleolithic and Mesolithic hunter-gatherers 13 500–8300 BP (plotted on a map of Europe during the last glacial maximum ca 22 000 BP). All Pleistocene hunter-gatherers analyzed to date carry mitochondrial lineages that belong to one of the U-clades: U2, U4, or U5. (b) Early farmers 7600–6500 BP. The map illustrates the approximate arrival times and duration of the earliest Neolithic cultures (in years BP). Very few of the early farmers belong to one of the U-clade mtDNA haplotypes, indicating discontinuity between Paleolithic/Mesolithic hunter-gatherers and early farmers [48,64]. (c) Later hunter-gatherers 6500–4500 BP. Whereas early hunter-gatherers carry exclusively mitochondrial U-lineages, later hunter-gatherers show additional lineages that are also present in early farming groups (b), pointing to a possible admixture between the groups or a change in lifestyle of former farmers back to hunting-gathering in Northern Europe. (d) Later farmers 6500–4500 BP. Compared to the period of the first appearance of farmers, late farmers have a significantly higher frequency of U-lineages. This can be explained by increasing rates of admixture between farmer and hunter gatherer groups during this period and by the adoption of a farming lifestyle by hunter-gatherers. The maps are adapted from [69] and show datapoints from [46,48,51, 54–56,61,62,64,70,71]. Abbreviation: BP, before present. 

And, of course, we have the ubiquitous Y-haplogroup G2a as the lineage par excellence of the first European farmers:

In contrast to mtDNA, ancient Y-chromosome data has until recently been less informative, but a single Y-chro-mosome haplotype (G2a) in 20 of 22 male individuals from the Late Neolithic cave site at Treilles [62] led to the hypothesis that a small male founding population arrived in Southern France, probably by a maritime route from the eastern Mediterranean, in the early Neolithic. The same haplotype was also found in five of six individuals from the Avellaner Cave [61] and in one out of three Central Euro-pean LBK individuals [63]. If authentic, the presence of the Y-chromosome haplogroup G2a in 26 of 31 Neolithic individuals from Germany, France, and Spain is both surprising and intriguing, but this requires further examination. 
The only high coverage genome sequence of a prehistoric European individual is that of the Tyrolean Iceman, Oetzi, a 5300 year-old individual from South Tyrol, which was recently reported at 7-fold coverage [45]. Comparison with 1300 contemporary Europeans indicated closest genetic affinities with southern Europeans, particularly inhabi-tants of the Tyrrhenian Islands. Intriguingly, this is also the region where the Y-chromosome haplotype of the Ice-man is found at highest frequency, and this haplotype belongs to the same G2a haplogroup described above.
And of course:
Future research should also reveal the effects of post-Neolithic demographic processes, including migration events, which preliminary data suggest had a major impact upon the distribution of genetic variation. These include events associated with Bronze Age civilizations, Iron Age cultures, and later migrations, including those triggered by the rise and fall of Empires.
The recovery of the European past has only just begun.


Trends in Genetics doi:10.1016/j.tig.2012.06.006

The genetic history of Europeans

Ron Pinhasi, Mark G. Thomas, Michael Hofreiter, Mathias Currat, Joachim Burger

The evolutionary history of modern humans is characterized by numerous migrations driven by environmental change, population pressures, and cultural innovations. In Europe, the events most widely considered to have had a major impact on patterns of genetic diversity are the initial colonization of the continent by anatomically modern humans (AMH), the last glacial maximum, and the Neolithic transition. For some decades it was assumed that the geographical structuring of genetic diversity within Europe was mainly the result of gene flow during and soon after the Neolithic transition, but recent advances in next-generation sequencing (NGS) technologies, computer simulation modeling, and ancient DNA (aDNA) analyses are challenging this simplistic view. Here we review the current knowledge on the evolutionary history of humans in Europe based on archaeological and genetic data.

Link

July 20, 2012

Redating of the Early Upper Paleolithic site of Riparo Mochi (Italy)

There are two possibilities on how the early Aurignacian entered Europe. According to one hypothesis, its bearers followed the Danube, which formed a natural corridor into the heartland of the continent which was, at the time, thickly forested. A different hypothesis is that the early Aurignacian entered Europe via the Mediterranean. Distinguishing between the two hypotheses depends on obtaining reliable chronological estimates for the Mediterranean and Central European Aurignacian

A recent dating of a site in the Swabian Jura suggested that the Aurignacian was earlier attested in Central Europe. But, another paper in the Journal of Human Evolution examines meticulously the sequence in the Moch rockshelter and finds that it is just as early.
Comparisons with dates for other Upper Palaeolithic contexts outside Italy suggest that the date of the Protoaurignacian of Mochi compares closely. In Fig. 9a the start boundaries for the earliest Aurignacian evidence at the sites of Geissenklösterle (Germany), Abri Pataud and Isturitz (France) are compared to the start boundary for unit G in Mochi. The first two sites were dated recently in Oxford with reliable methodologies (Higham et al., 2011; Higham et al., in press) while for Isturitz only a small number of dates exist for the earliest Upper Palaeolithic (Szmidt et al., 2010). This comparison reveals that the lowermost Aurignacian levels at Geissenklosterle (AHIII) and Isturitz (C4d) date to the same period as Mochi G, at around 42.7-41.5 ka cal BP (68.2%). The earliest Aurignacian of Abri Pataud dates slightly later to around 41e40 ka cal BP (68.2%), but the assemblage there has always been considered more evolved, so this is not surprising. No Mousterian dates are included in any of these calculations, therefore the start boundaries in the Bayesian models are not well constrained at their earliest end. What is interesting is that there appears to be a close similarity between the dates for the Protoaurignacian and Early Aurignacian sites in Germany on the Danube and on the Mediterranean coast. This might suggest a rapid dispersal of both variants of the Aurignacian across Europe at c. 44-42 ka cal BP.
It does appear that the Aurignacian was a continent-wide punctuational event in Europe which occurred in the middle to late 40 thousands ka cal BP.

Either there were two streams into Europe (Danubian and Mediterranean), or one stream that quickly inundated much of the continent. Given that the argument for the Danubian Corridor is partly related to the ease of access it provided, it is difficult to imagine how the people who followed it would quickly stray far from it all the way to Italy. Overall, it does appear that there were multiple streams into Europe, and perhaps new research in the Balkans, Eastern Europe, and West Asia, may help us trace the earlier predecssor of these streams before they followed their separate ways into Europe.

Journal of Human Evolution DOI:10.1016/j.jhevol.2011.11.009

A new chronostratigraphic framework for the Upper Palaeolithic of Riparo Mochi (Italy)


Katerina Douka et al.


The rockshelter of Mochi, on the Ligurian coast of Italy, is often used as a reference point in the formation of hypotheses concerning the arrival of the Aurigancian in Mediterranean Europe. Yet, the site is poorly known. Here, we describe the stratigraphic sequence based on new field observations and present 15 radiocarbon determinations from the Middle Palaeolithic (late Mousterian) and Early Upper Palaeolithic (Aurignacian and Gravettian) levels. The majority of dates were produced on humanly modified material, specifically marine shell beads, which comprise some of the oldest directly-dated personal ornaments in Europe. The radiocarbon results are incorporated into a Bayesian statistical model to build a new chronological framework for this key Palaeolithic site. A tentative correlation of the stratigraphy to palaeoclimatic records is also attempted.

Link

May 26, 2012

43,000-year old Aurignacian in Swabian Jura

A new paper continues the re-assessment of the radiocarbon dating record in Europe. It pushes the Aurignacian of Central Europe back in time, but not as far back as the appearance of modern humans in Europe. The implication is that the advanced music and art of the Aurignacian did not accompany modern humans as they made their first steps into Europe, but rather developed there.

The authors distinguish between a "strong" version of their model (which would posit a monocentric origin of music/art around the Geissenkoesterle site), and a "weak" one in which these innovations were contributed in parallel by different regions. A better understanding of the origin of different innovations and their assignment to specific groups of modern humans may help us better understand what was the "common core" of behavioral and technological modernity that facilitated the success of our species.

From the paper:

The majority of scholars conclude that the Aurignacian is the earliest signature of the first modern humans in Europe. Recent research suggests that this is not likely to be the case. Benazzi et al. (2011) have shown that the Uluzzian of Italy and Greece is likely to be a modern human industry based on the reanalysis of infant teeth in the archaeological site of Cavallo, and also demonstrated that it dates to 45,000-43,000 cal BP. Other dated examples from other Uluzzian sites (e.g., Higham et al., 2009) fall into the same period, and the Uluzzian is always stratigraphically below the Proto- Aurignacian in Italian sites where both co-occur. This adds an additional level of complexity to the emerging picture of early human dispersals and suggests that the Aurignacian does not represent the earliest evidence of our species in Europe. 
... 
Taken together, these results suggest that modern humans arrived in Europe as early as ~45,000 cal BP and spread rapidly across Europe to as far as southern England between 43,000 and41,000 cal BP. The dates for the lower Aurignacian at Geissenklosterle fall in the same period and appear to pre-date the ages for the Proto- Aurignacian and Early Aurignacian in other regions (Fig. 6). The new results suggest that the caves of the Swabian Jura document the earliest phase of the Aurignacian, and the region can be viewed as one of the key areas in which a variety of cultural innovations, including figurative art, mythical images, and musical instruments, are first documented. These dates are consistent with the Danube Valley serving as an important corridor for the movement of people and ideas (Conard, 2002; Conard and Bolus, 2003). 
... 
The new radiocarbon dates from Geissenklosterle document the presence of the Aurignacian in the Swabian Jura prior to the Heinrich 4 cold phase, with the Early Aurignacian beginning around 42,500 cal BP. In the coming years, excavations in the Swabian Jura will continue and new radiometric dates should contribute to an improved understanding of the spatial-temporal development of the Aurignacian and its innovative material culture.
From the press release:
Researchers from Oxford and Tübingen have published new radiocarbon dates from the from Geißenklösterle Cave in Swabian Jura of Southwestern Germany in the Journal of Human Evolution. The new dates use improved methods to remove contamination and produced ages between began between 42,000 – 43,000 years ago for start of the Aurignacian, the first culture to produce a wide range of figurative art, music and other key innovations as postulated in the Kulturpumpe Hypothesis. The full spectrum of these innovations were established in the region no later than 40 000 years ago.
Journal of Human Evolution doi:10.1016/j.jhevol.2012.03.003

Τesting models for the beginnings of the Aurignacian and the advent of figurative art and music: The radiocarbon chronology of Geißenklösterle

Thomas Higham et al.

The German site of Geißenklösterle is crucial to debates concerning the European Middle to Upper Palaeolithic transition and the origins of the Aurignacian in Europe. Previous dates from the site are central to an important hypothesis, the Kulturpumpe model, which posits that the Swabian Jura was an area where crucial behavioural developments took place and then spread to other parts of Europe. The previous chronology (critical to the model), is based mainly on radiocarbon dating, but remains poorly constrained due to the dating resolution and the variability of dates. The cause of these problems is disputed, but two principal explanations have been proposed: a) larger than expected variations in the production of atmospheric radiocarbon, and b) taphonomic influences in the site mixing the bones that were dated into different parts of the site. We reinvestigate the chronology using a new series of radiocarbon determinations obtained from the Mousterian, Aurignacian and Gravettian levels. The results strongly imply that the previous dates were affected by insufficient decontamination of the bone collagen prior to dating. Using an ultrafiltration protocol the chronometric picture becomes much clearer. Comparison of the results against other recently dated sites in other parts of Europe suggests the Early Aurignacian levels are earlier than other sites in the south of France and Italy, but not as early as recently dated sites which suggest a pre-Aurignacian dispersal of modern humans to Italy by ∼45000 cal BP. They are consistent with the importance of the Danube Corridor as a key route for the movement of people and ideas. The new dates fail to refute the Kulturpumpe model and suggest that Swabian Jura is a region that contributed significantly to the evolution of symbolic behaviour as indicated by early evidence for figurative art, music and mythical imagery.

Link

April 04, 2012

Modern humans responsible for early Aurignacian

The fact that modern humans created the Aurignacian has long been hypothesized, and was recently supported by dental analysis. This attribution is now supported by analysis of a couple of jawbones and associated dental remains from France.

Journal of Human Evolution

The Early Aurignacian human remains from La Quina-Aval (France)

Christine Verna et al.

There is a dearth of diagnostic human remains securely associated with the Early Aurignacian of western Europe, despite the presence of similarly aged early modern human remains from further east. One small and fragmentary sample of such remains consists of the two partial immature mandibles plus teeth from the Early Aurignacian of La Quina-Aval, Charente, France. The La Quina-Aval 4 mandible exhibits a prominent anterior symphyseal tuber symphyseos on a vertical symphysis and a narrow anterior dental arcade, both features of early modern humans. The dental remains from La Quina-Aval 1 to 4 (a dm1, 2 dm2, a P4 and a P4) are unexceptional in size and present occlusal configurations that combine early modern human features with a few retained ancestral ones. Securely dated to ∼33 ka 14C BP (∼38 ka cal BP), these remains serve to confirm the association of early modern humans with the Early Aurignacian in western Europe.

Link

November 29, 2011

Aurignacian in Greece >40 thousand years ago

Related:
Antiquity Volume: 85 Number: 330 Page: 1131–1150

Franchthi Cave revisited: the age of the Aurignacian in south-eastern Europe

K. Douka1 et al.

The Aurignacian, traditionally regarded as marking the beginnings of Sapiens in Europe, is notoriously hard to date, being almost out of reach of radiocarbon. Here the authors return to the stratified sequence in the Franchthi Cave, chronicle its lithic and shell ornament industries and, by dating humanly-modified material, show that Franchthi was occupied either side of the Campagnian Ignimbrite super-eruption around 40000 years ago. Along with other results, this means that groups of Early Upper Palaeolithic people were active outside the Danube corridor and Western Europe, and probably in contact with each other over long distances.Along with other results, this means that groups of Early Upper Palaeolithic people were active outside the Danube corridor and Western Europe, and probably in contact with each other over long distances.

Link

November 02, 2011

Earliest sapiens remains in Europe

From the BBC:
They may be yellowed and worn but these ancient teeth and jaw fragment have something very revealing to say about how modern humans conquered the globe.

The specimens, unearthed in Italy and the UK, have just been confirmed as the earliest known remains of Homo sapiens in Europe.

Careful dating suggests they are more than 41,000 years old, and perhaps as much as 45,000 years old in the case of the Italian "baby teeth".

...

The re-assessments have further importance because palaeoanthropologists can now put modern humans in the caves at the same time as the stone and bone tool technologies discovered there.

There has been some doubt over who created the so-called Aurignacian artefacts at Kents Cavern and the slightly older Uluzzian technologies at Grotta del Cavallo. It could have been Neanderthals, but there is now an obvious association in time with Homo sapiens.


From the NY Times:
They had in fact discovered the oldest known skeletal remains of anatomically modern humans in the whole of Europe, two international research teams reported Wednesday.

The scientists who made the discovery and others who study human origins say they expect the findings to reignite debate over the relative capabilities of the immigrant modern humans and the indigenous Neanderthals, their closest hominid relatives; the extent of their interactions; and perhaps the reasons behind the Neanderthal extinction. The findings have already prompted speculation that the Homo sapiens migrations into Europe may have come in at least two separate waves, rather than just one.

I'll add the abstracts later. This certainly seems to be incompatible with substantial Neandertal interbreeding. If humans and Neandertals were genetically compatible species, then why would they maintain very separate morphological populations for ~10ka? We would expect the two populations to quickly merge into one. Moreover, a longer period of interbreeding in West Eurasia would have left an excess of "Neandertal" ancestry in modern West Eurasians, something we simply don't observe.

Press release:
"What the new dates mean", Benazzi summarised, "is that these two teeth from Grotta del Cavallo represent the oldest European modern human fossils currently known. This find confirms that the arrival of our species on the continent – and thus the period of coexistence with Neanderthals – was several thousand years longer than previously thought. Based on this fossil evidence, we have confirmed that modern humans and not Neanderthals are the makers of the Uluzzian culture. This has important implications to our understanding of the development of 'fully modern' human behaviour. Whether the colonisation of the continent occurred in one or more waves of expansion and which routes were followed is still to be established."


Nature (2011) doi:10.1038/nature10484

The earliest evidence for anatomically modern humans in northwestern Europe

Tom Higham et al.

The earliest anatomically modern humans in Europe are thought to have appeared around 43,000-42,000 calendar years before present (43-42 kyr cal BP), by association with Aurignacian sites and lithic assemblages assumed to have been made by modern humans rather than by Neanderthals. However, the actual physical evidence for modern humans is extremely rare, and direct dates reach no farther back than about 41-39 kyr cal BP, leaving a gap. Here we show, using stratigraphic, chronological and archaeological data, that a fragment of human maxilla from the Kent’s Cavern site, UK, dates to the earlier period. The maxilla (KC4), which was excavated in 1927, was initially diagnosed as Upper Palaeolithic modern human1. In 1989, it was directly radiocarbon dated by accelerator mass spectrometry to 36.4-34.7 kyr cal BP2. Using a Bayesian analysis of new ultrafiltered bone collagen dates in an ordered stratigraphic sequence at the site, we show that this date is a considerable underestimate. Instead, KC4 dates to 44.2-41.5 kyr cal BP. This makes it older than any other equivalently dated modern human specimen and directly contemporary with the latest European Neanderthals, thus making its taxonomic attribution crucial. We also show that in 13 dental traits KC4 possesses modern human rather than Neanderthal characteristics; three other traits show Neanderthal affinities and a further seven are ambiguous. KC4 therefore represents the oldest known anatomically modern human fossil in northwestern Europe, fills a key gap between the earliest dated Aurignacian remains and the earliest human skeletal remains, and demonstrates the wide and rapid dispersal of early modern humans across Europe more than 40 kyr ago.

Link

Nature (2011) doi:10.1038/nature10617

Early dispersal of modern humans in Europe and implications for Neanderthal behaviour

Stefano Benazzi et al.


The appearance of anatomically modern humans in Europe and the nature of the transition from the Middle to Upper Palaeolithic are matters of intense debate. Most researchers accept that before the arrival of anatomically modern humans, Neanderthals had adopted several transitional technocomplexes. Two of these, the Uluzzian of southern Europe and the Châtelperronian of western Europe, are key to current interpretations regarding the timing of arrival of anatomically modern humans in the region and their potential interaction with Neanderthal populations. They are also central to current debates regarding the cognitive abilities of Neanderthals and the reasons behind their extinction1, 2, 3, 4, 5, 6. However, the actual fossil evidence associated with these assemblages is scant and fragmentary7, 8, 9, 10, and recent work has questioned the attribution of the Châtelperronian to Neanderthals on the basis of taphonomic mixing and lithic analysis11, 12. Here we reanalyse the deciduous molars from the Grotta del Cavallo (southern Italy), associated with the Uluzzian and originally classified as Neanderthal13, 14. Using two independent morphometric methods based on microtomographic data, we show that the Cavallo specimens can be attributed to anatomically modern humans. The secure context of the teeth provides crucial evidence that the makers of the Uluzzian technocomplex were therefore not Neanderthals. In addition, new chronometric data for the Uluzzian layers of Grotta del Cavallo obtained from associated shell beads and included within a Bayesian age model show that the teeth must date to ~45,000-43,000 calendar years before present. The Cavallo human remains are therefore the oldest known European anatomically modern humans, confirming a rapid dispersal of modern humans across the continent before the Aurignacian and the disappearance of Neanderthals.

Link

October 02, 2011

Rapid onset of Aurignacian in Southwest France

Journal of Archaeological Science doi:10.1016/j.jas.2011.09.019

A Radiocarbon chronology for the complete Middle to Upper Palaeolithic transitional sequence of Les Cottés (France)

Sahra Talamo et al.

The Middle to Upper Palaeolithic transition is the key period for our understanding of Neanderthal and modern human interactions in Europe. The site of Les Cottés in south-west France is one of the rare sites with a complete and well defined sequence covering this transition period. We undertook an extensive radiocarbon dating program on mammal bone which allows us to propose a chronological framework of five distinct phases dating from the Mousterian to the Early Aurignacian at this site. We found that the Mousterian and Châtelperronian industries are separated from the overlying Protoaurignacian by a gap of approximately 1000 calendar years. Based on a comparison with Upper Paleolithic sites in Europe we see an overlap in the ages of Châtelperronian industries and Aurignacian lithic assemblages, which are usually associated with Anatomical Modern Humans, which is consistent with an acculturation at distance model for these late Neanderthals. The Proto and Early Aurignacian appear contemporaneous indicating that this transition was rapid in this region. Anatomically Modern Humans are present at the site of Les Cottés at least at 39,500 cal BP roughly coincident with the onset of the cold phase Heinrich 4.

Link

October 26, 2010

100,000 year old anatomically modern humans from Zhirendong

I'm sure I'll have a lot to say about this paper once I read it, but right now I'm focusing on the pilot phase of the Dodecad Project.

I'll post my comments later in this post; For now, I'll just say: those pesky ancestors have a way of upsetting scientific theories. But, in a sense, that's the beauty of science.


Related: the previous "oldest modern human" was Liujiang.

The paper's section on populational implications:
Populational Implications. Assuming that modern human biology
emerged initially in the late Middle Pleistocene of equatorial
Africa (8, 31, 36), the presence of derived, modern human
mandibular features in East Asia by early MIS 5 implies early
modern human population dispersal or gene flow across at least
southern Asia sometime before the age of the Zhiren Cave human
remains or independent emergence of these features in East
Asia. The early modern human MIS 5 dispersal into Southwest
Asia may therefore have included further population dispersal or
gene flow eastward across southern Asia.

However, the Zhiren 3 complex mosaic of distinctly derived,
modern human features of the anterior mandibular symphysis,
combined with archaic features of the lingual symphysis and
overall mandibular robustness, indicates that any “dispersal”
involved substantial admixture between dispersing early modern
human populations (cf. 5) or gene flow into regional populations
(cf. 37, 38). The paleontological data are insufficient to assess the
levels of such gene flow or admixture, but the morphological
mosaic of Zhiren 3 is most parsimoniously explained as the result
of such populational processes. It is not easily accommodated
into any Out-of-Africa with populational replacement scenario.
The short story: anatomically modern humans (AMHs) first emerge in East Africa in examples like Omo and Herto about 200-150ky. The first undeniably modern finds in Eurasia were from Qafzeh in the Levant, roughly contemporaneous with the new Zhiren sample.

These Qafzeh AMHs were usually interpreted as the Out-of-Africa-that-failed, an early excursion of anatomically modern humans into Eurasia that seems to have fizzled as AMHs appear, first as isolated teeth, and then as skulls like the Oase mandible and Mladec in Europe, and Liujiang in East Asia only 50-60 thousand years later.

Until now, it was supposed that these later AMHs were descendants of the Out-of-Africa-that succeeded, which postdated Qafzeh, was contemporaneous with the Aurignacian and the emergence of full-blown behavioral modernity.

The new Zhirendong find upsets this standard model: anatomically modern humans existed 100 thousand years ago in Africa, the Levant, and East Asia. It's extremely difficult to make the argument now that two of these AMH populations died out and the African one repopulated the world.

The two pillars of Out of Africa are (i) the genetics, i.e., the evidence for greater African genetic diversity, diminution of heterozygosity from east Africa, and increase of linkage disequilibrium, (ii) the palaeoanthropology, i.e., the temporal gap between AMHs in Africa and Eurasia.

Factor (ii) has just taken a huge blow. Moreover, Out-of-Africa supporters must now either (a) come up with scenarios for dispersal of AMHs 50,000 years at least before their current models, or (b) accept the emergence of modernity in Eurasia without dispersals from Africa.

UPDATE: John Hawks questions the chin=African equation.

PNAS doi: 10.1073/pnas.1014386107

Human remains from Zhirendong, South China, and modern human emergence in East Asia

Wu Liu et al.

The 2007 discovery of fragmentary human remains (two molars and an anterior mandible) at Zhirendong (Zhiren Cave) in South China provides insight in the processes involved in the establishment of modern humans in eastern Eurasia. The human remains are securely dated by U-series on overlying flowstones and a rich associated faunal sample to the initial Late Pleistocene, >100 kya. As such, they are the oldest modern human fossils in East Asia and predate by >60,000 y the oldest previously known modern human remains in the region. The Zhiren 3 mandible in particular presents derived modern human anterior symphyseal morphology, with a projecting tuber symphyseos, distinct mental fossae, modest lateral tubercles, and a vertical symphysis; it is separate from any known late archaic human mandible. However, it also exhibits a lingual symphyseal morphology and corpus robustness that place it close to later Pleistocene archaic humans. The age and morphology of the Zhiren Cave human remains support a modern human emergence scenario for East Asia involving dispersal with assimilation or populational continuity with gene flow. It also places the Late Pleistocene Asian emergence of modern humans in a pre-Upper Paleolithic context and raises issues concerning the long-term Late Pleistocene coexistence of late archaic and early modern humans across Eurasia.

Link

July 07, 2009

Early modern humans in Europe (Bohunician, Proto-Aurignacian, Aurignacian)

If it is confirmed by palaeoanthropology that modern humans were responsible for the Bohunician, this would push back the time of the earliest arrival of Europeans by a good 10ky+ or so. There is also a freely accessible paper online by Jiri Svoboda on the Bohunician and Emiran which should be useful for those interested in this topic.

The author of the present paper writes:
The earliest evidence of anatomically modern humans in Europe is currently dated to ≈48,000 cal BP and the beginning of the GI 12 warm interval. It is based on artifact assemblages (Bohunician) that are similar to an earlier industry in the Near East (Emiran) probably produced by modern humans. Bohunician sites are present in South-Central Europe (27, 29, 32) and possibly Eastern Europe as well, during this interval.

...

A possible second movement of modern humans into Europe may be represented by another group of artifact assemblages that date to as early as 45,000–44,000 cal BP and GS 11/GI 11. They vary significantly in composition and are sometimes referred to as Proto-Aurignacian (27, 43, 50, 64). Many are similar to a contemporaneous industry in the Near East (Ahmarian) manufactured by modern humans (1, 33). Proto-Aurignacian assemblages are found in Southwest and South-Central Europe and seem to be present in Eastern Europe at this time (50). Although the oldest known modern human skeletal remains in Europe date to this interval, they are not associated with artifacts (44).

...

Both the Bohunician and Proto-Aurignacian sites probably represent modern human population movements from the Near East into Europe via the Balkans.

...

After the onset of cold HE4 at ≈40,000 cal BP, a new industry (Aurignacian) possibly developed in South-Central Europe spread rapidly throughout the continent. Aurignacian assemblages are associated with the remains of modern humans in Western, Central, and Eastern Europe (1, 7, 10, 46, 52, 62).
There are currently no remains from the Bohunician, so the association with modern humans is still tentative:
Many paleoanthropologists will want to see this conclusion supported by discovery of modern human skeletal remains in these sites or at least in a context that may be dated to the same period.
Even the much later Aurignacian itself was considered by some to be an ambiguous case, although recent evidence from teeth seems to confirm that it was made by modern humans.

Thus, I don't anticipate that the acceptance of the Bohunician as modern human in origin will be without a fight by those who might see Neandertal involvement. Such things are hotly contested even when there are skulls associated with assemblages, so you can imagine how it will be when modern human involvement is only hinted by archaeological parallels, in this case with the Emiran, which also lacks associated human remains.

If Neandertals were behind the Emiran-Bohunician, this would suggest a previously unsuspected degree of vitality for late Neandertals, as it would see them undertake a colonization, or at least long-term cultural contacts across a substantial distance.

On the other hand, if modern humans are behind it, then this would suggest a much longer co-existence between moderns and Neandertals in the European continent, even though, possibly, not in the same part thereof. It would also dispel ideas about a fairly late colonization of Europe compared to Australasia that have been popularized by documentaries in recent years.

PNAS doi:10.1073/pnas.0903446106

The spread of modern humans in Europe

John F. Hoffecker

Abstract

The earliest credible evidence of Homo sapiens in Europe is an archaeological proxy in the form of several artifact assemblages (Bohunician) found in South-Central and possibly Eastern Europe, dating to ≤48,000 calibrated radiocarbon years before present (cal BP). They are similar to assemblages probably made by modern humans in the Levant (Emiran) at an earlier date and apparently represent a population movement into the Balkans during a warm climate interval [Greenland Interstadial 12 (GI 12)]. A second population movement may be represented by a diverse set of artifact assemblages (sometimes termed Proto-Aurignacian) found in the Balkans, parts of Southwest Europe, and probably in Eastern Europe, and dating to several brief interstadials (GI 11–GI 9) that preceded the beginning of cold Heinrich Event 4 (HE4) (≈40,000 cal BP). They are similar to contemporaneous assemblages made by modern humans in the Levant (Ahmarian). The earliest known human skeletal remains in Europe that may be unequivocally assigned to H. sapiens (Peçstera cu Oase, Romania) date to this time period (≈42,000 cal BP) but are not associated with artifacts. After the Campanian Ignimbrite volcanic eruption (40,000 cal BP) and the beginning of HE4, artifact assemblages assigned to the classic Aurignacian, an industry associated with modern human skeletal remains that seems to have developed in Europe, spread throughout the continent.

Link

June 24, 2009

Paleolithic Flutes from the early Aurignacian in Germany

The Hohle Fels site was in the news recently for the discovery of the "first depiction of the human form".

Nature doi:10.1038/nature08169

New flutes document the earliest musical tradition in southwestern Germany

Nicholas J. Conard et al.

Considerable debate surrounds claims for early evidence of music in the archaeological record. Researchers universally accept the existence of complex musical instruments as an indication of fully modern behaviour and advanced symbolic communication1 but, owing to the scarcity of finds, the archaeological record of the evolution and spread of music remains incomplete. Although arguments have been made for Neanderthal musical traditions and the presence of musical instruments in Middle Palaeolithic assemblages, concrete evidence to support these claims is lacking. Here we report the discovery of bone and ivory flutes from the early Aurignacian period of southwestern Germany. These finds demonstrate the presence of a well-established musical tradition at the time when modern humans colonized Europe, more than 35,000 calendar years ago. Other than the caves of the Swabian Jura, the earliest secure archaeological evidence for music comes from sites in France and Austria and post-date 30,000 years ago

Link