December 12, 2018

More statistical Palaeoafricans

More statistical evidence for a deep Palaeoafrican layer in modern Sub-Saharan Africans in the preprint by Ragsdale and Gravel (below). When I proposed that modern Africans are a mixture of Afrasians and diverse Palaeoafricans I only had two things to go on: greater African genetic diversity (produced by admixture between diverse Palaeoafricans and Afrasians), and cranioskeletal archaicity in known African specimens.

Current models of African origins have African groups tracing their ancestry to groups that split off 200-300 thousand years from the rest of mankind, as well as even more archaic Africans (such as the ones proposed in this preprint) that split off as early as 500 thousand years ago. I'm pretty sure there are multiple layers in-between yet to be discovered: counterintuitively archaic admixture is easiest to discover if it is more distant (as it's more distinctive). But, it's unimaginable that Afrasians admixed with people that split off 200 thousand years ago, 500 thousand years ago, and none in-between.

We now know that Eurasians are not pure Afrasian either: they have some admixture with archaic Eurasians. Interestingly, archaic Eurasians are the most deeply splitting branches of humans to have contributed to modern mankind. All African genetic lineages (both Palaeoafrican and Afrasian) are nested within Eurasian genetic variation, with the jury still out on whether this happened when (1) African Afrasian populations left Africa and met archaic Eurasians, or (2) Eurasian Afrasian populations left West Eurasia and met archaic Africans.


Models of archaic admixture and recent history from two-locus statistics 
Aaron P Ragsdale, Simon Gravel

We learn about population history and underlying evolutionary biology through patterns of genetic polymorphism. Many approaches to reconstruct evolutionary histories focus on a limited number of informative statistics describing distributions of allele frequencies or patterns of linkage disequilibrium. We show that many commonly used statistics are part of a broad family of two-locus moments whose expectation can be computed jointly and rapidly under a wide range of scenarios, including complex multi-population demographies with continuous migration and admixture events. A full inspection of these statistics reveals that widely used models of human history fail to predict simple patterns of linkage disequilibrium. To jointly capture the information contained in classical and novel statistics, we implemented a tractable likelihood-based inference framework for demographic history. Using this approach, we show that human evolutionary models that include archaic admixture in Africa, Asia, and Europe provide a much better description of patterns of genetic diversity across the human genome. We estimate that individuals in two African populations have 6−8% ancestry through admixture from an unidentified archaic population that diverged from the ancestors of modern humans 500 thousand years ago.