Showing posts with label SLC24A5. Show all posts
Showing posts with label SLC24A5. Show all posts

April 21, 2015

PCA and natural selection

arXiv:1504.04543 [q-bio.PE]

Detecting genomic signatures of natural selection with principal component analysis: application to the 1000 Genomes data

Nicolas Duforet-Frebourg et al.

(Submitted on 8 Apr 2015)

Large-scale genomic data offers the perspective to decipher the genetic architecture of natural selection. To characterize natural selection, various analytical methods for detecting candidate genomic regions have been developed. We propose to perform genome-wide scans of natural selection using principal component analysis. We show that the common Fst index of genetic differentiation between populations can be viewed as a proportion of variance explained by the principal components. Looking at the correlations between genetic variants and each principal component provides a conceptual framework to detect genetic variants involved in local adaptation without any prior definition of populations. To validate the PCA-based approach, we consider the 1000 Genomes data (phase 1) after removal of recently admixed individuals resulting in 850 individuals coming from Africa, Asia, and Europe. The number of genetic variants is of the order of 36 millions obtained with a low-coverage sequencing depth (3X). The correlations between genetic variation and each principal component provide well-known targets for positive selection (EDAR, SLC24A5, SLC45A2, DARC), and also new candidate genes (APPBPP2, TP1A1, RTTN, KCNMA, MYO5C) and non-coding RNAs. In addition to identifying genes involved in biological adaptation, we identify two biological pathways involved in polygenic adaptation that are related to the innate immune system (beta defensins) and to lipid metabolism (fatty acid omega oxidation). PCA-based statistics retrieve well-known signals of human adaptation, which is encouraging for future whole-genome sequencing project, especially in non-model species for which defining populations can be difficult. Genome scan based on PCA is implemented in the open-source and freely available PCAdapt software.

Link

bioRxiv http://dx.doi.org/10.1101/018143

Fast principal components analysis reveals independent evolution of ADH1B gene in Europe and East Asia

Kevin J Galinsky et al.

Principal components analysis (PCA) is a widely used tool for inferring population structure and correcting confounding in genetic data. We introduce a new algorithm, FastPCA, that leverages recent advances in random matrix theory to accurately approximate top PCs while reducing time and memory cost from quadratic to linear in the number of individuals, a computational improvement of many orders of magnitude. We apply FastPCA to a cohort of 54,734 European Americans, identifying 5 distinct subpopulations spanning the top 4 PCs. Using a new test for natural selection based on population differentiation along these PCs, we replicate previously known selected loci and identify three new signals of selection, including selection in Europeans at the ADH1B gene. The coding variant rs1229984 has previously been associated to alcoholism and shown to be under selection in East Asians; we show that it is a rare example of independent evolution on two continents.

Link

March 15, 2015

Natural selection and ancient European DNA

A new preprint on the bioRxiv studies the same data as the recent Haak et al. paper, but focuses on natural selection in Europe. Until recently, selection could only be studied by looking at modern populations, but since selection is genetic change over time effected by the environment, it's possible that studies like this will be the norm in the future.

The new study seems to confirm the results of Wilde et al. on steppe groups, as the Yamnaya had a very low frequency of the HERC2 derived "blue eye" allele and a lower frequency of the SLC45A2 "light skin" allele than any modern Europeans. The Yamnaya seem to have been fixed for the other SLC24A5 "light skin" allele which seems to have been at high frequency in all ancient groups save the "Western Hunter Gatherers".

It seems that light pigmentation traits had already existed in pre-Indo-European Europeans (both farmers and hunter-gatherers) and so long-standing philological attempts to correlate them with the arrival of light-pigmented Indo-Europeans from the steppe (or indeed anywhere), and to contrast them with darker pre-Indo-European inhabitants of Europe were misguided. If anything, it seems that the "fairest of them all" were the Scandinavian hunter-gatherers, and a combination of light/dark pigmentation was also present in Neolithic farmers and Western Hunter Gatherers in various combinations.

It also seems that both the theory that lactose tolerance started with LBK farmers and the theory that it came to Europe from milk-drinking steppe Indo-Europeans were wrong, as this trait seems to be altogether absent in European hunter-gatherers, farmers, and Yamnaya, and make a very timid appearance in the Late neolithic/Bronze Age before shooting up in frequency to the present.

Another new development is the ability to predict "genetic height" from ancient DNA. I think this may be a little bit superfluous as you can predict "actual height" by measuring long bone lengths. On the other hand, actualized height depends not only on genetics but also on diet, disease, etc., so it's useful to look at genetic changes in such polygenic traits directly.

A big surprise was the presence of the derived EDAR allele in Swedish hunter-gatherers. This allele is very rare in modern Europeans and seems to have pleiotropic effects in East Asians. This raises the question why this allele (that was so successful in East Asians), never "took hold" in Europeans. One possibility is that it never provided an advantage to Europeans (I don't think anyone really knows what it's actually good for). Another is that Swedish hunter-gatherers simply didn't contribute much ancestry to modern Europeans and so the allele never got the chance to rise in frequency by much.

bioRxiv http://dx.doi.org/10.1101/016477

Eight thousand years of natural selection in Europe

Iain Mathieson et al.

The arrival of farming in Europe beginning around 8,500 years ago required adaptation to new environments, pathogens, diets, and social organizations. While evidence of natural selection can be revealed by studying patterns of genetic variation in present-day people, these pattern are only indirect echoes of past events, and provide little information about where and when selection occurred. Ancient DNA makes it possible to examine populations as they were before, during and after adaptation events, and thus to reveal the tempo and mode of selection. Here we report the first genome-wide scan for selection using ancient DNA, based on 83 human samples from Holocene Europe analyzed at over 300,000 positions. We find five genome-wide signals of selection, at loci associated with diet and pigmentation. Surprisingly in light of suggestions of selection on immune traits associated with the advent of agriculture and denser living conditions, we find no strong sweeps associated with immunological phenotypes. We also report a scan for selection for complex traits, and find two signals of selection on height: for short stature in Iberia after the arrival of agriculture, and for tall stature on the Pontic-Caspian steppe earlier than 5,000 years ago. A surprise is that in Scandinavian hunter-gatherers living around 8,000 years ago, there is a high frequency of the derived allele at the EDAR gene that is the strongest known signal of selection in East Asians and that is thought to have arisen in East Asia. These results document the power of ancient DNA to reveal features of past adaptation that could not be understood from analyses of present-day people.

Link (pdf)

January 26, 2014

Brown-skinned, blue-eyed, Y-haplogroup C-bearing European hunter-gatherer from Spain (Olalde et al. 2014)

There is nothing like a little ancient DNA weirdness to start off 2014, which promises to be as exciting as 2013 was.

The new study La Brana 1 identifies it as ancestral in the SLC24A5 locus in which virtually all Europeans are derived. This comes in the heels of the Loschbour preprint which identified that sample from Luxembourg as also being ancestral. Taken together, it's now clear that hunter-gatherers from Mesolithic Western Europe were brown.

Curiously, it now seems that both Europe and India were (in part) inhabited by brown people and became lighter by a process of admixture + selection. The process went "all the way" in Europe, but a cline of pigmentation was sustained in India.

The other finding (not mentioned in the abstract) is that La Brana 1 belonged to Y-haplogroup C6! This is a low-frequency European clade of haplogroup C. So now, we have evidence that haplogroup C is not eastern Eurasian (as the presence of its subclades in Australia, India, East Asia, and the Americas might suggest), but a pan-Eurasian entity. It remains to be seen whether this C-in-Europe can be pushed further back in time, but finding it in Mesolithic Iberia reduces the chance that it's some random eastern Eurasian who made it to the outskirts of Europe recently.

Finally, La Brana 1 has derived alleles at loci associated with pathogen resistance. This might be important, because a common hypothesis is that Europeans developed this type of resistance during the Neolithic as they started interacting with the pathogens of domesticated species and started living in less-hygienic higher-density settlements.


Nature (2014) doi:10.1038/nature12960

Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European

Iñigo Olalde et al.

Ancient genomic sequences have started to reveal the origin and the demographic impact of farmers from the Neolithic period spreading into Europe1, 2, 3. The adoption of farming, stock breeding and sedentary societies during the Neolithic may have resulted in adaptive changes in genes associated with immunity and diet4. However, the limited data available from earlier hunter-gatherers preclude an understanding of the selective processes associated with this crucial transition to agriculture in recent human evolution. Here we sequence an approximately 7,000-year-old Mesolithic skeleton discovered at the La Braña-Arintero site in León, Spain, to retrieve a complete pre-agricultural European human genome. Analysis of this genome in the context of other ancient samples suggests the existence of a common ancient genomic signature across western and central Eurasia from the Upper Paleolithic to the Mesolithic. The La Braña individual carries ancestral alleles in several skin pigmentation genes, suggesting that the light skin of modern Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a significant number of derived, putatively adaptive variants associated with pathogen resistance in modern Europeans were already present in this hunter-gatherer.

Link

January 09, 2014

SLC24A5 light skin pigmentation allele origin

From the paper:
Adjustment for undercounting is substantial, increasing the estimated age for the combined samples to 12.4 (95% confidence interval 7.6−19.2) kya. If mutation rates in recent humans are lower than predicted from the human-chimpanzee divergence (Scally and Durbin 2012), true ages will be even older. Our adjusted dates overlap those previously reported (Beleza et al. 2012) and are also consistent with the lower limit for the origin of A111T set by the finding that the Alpine “iceman” dated to 5.3 kya was homozygous for this variant (Keller et al. 2012).

Related:

Taking the 12.4ky estimate and multiplying by two (for the slower autosomal mutation rate) yields an estimate of 25ky, so it seems that this allele did not accompany the earliest modern human colonists of West Eurasia but emerged in some region and spread from there. It will be interesting to see (through ancient DNA) by what processes of migration, admixture, and selection this transpired.


G3 doi: 10.1534/g3.113.007484

Molecular Phylogeography of a Human Autosomal Skin Color Locus Under Natural Selection

Victor A. Canfield et al.

Divergent natural selection caused by differences in solar exposure has resulted in distinctive variations in skin color between human populations. The derived light skin color allele of the SLC24A5 gene, A111T, predominates in populations of Western Eurasian ancestry. To gain insight into when and where this mutation arose, we defined common haplotypes in the genomic region around SLC24A5 across diverse human populations and deduced phylogenetic relationships between them. Virtually all chromosomes carrying the A111T allele share a single 78-kb haplotype that we call C11, indicating that all instances of this mutation in human populations share a common origin. The C11 haplotype was most likely created by a crossover between two haplotypes, followed by the A111T mutation. The two parental precursor haplotypes are found from East Asia to the Americas but are nearly absent in Africa. The distributions of C11 and its parental haplotypes make it most likely that these two last steps occurred between the Middle East and the Indian subcontinent, with the A111T mutation occurring after the split between the ancestors of Europeans and East Asians.

Link

November 08, 2013

Europeans and South Asians share by descent SLC24A5 light skin allele

The age estimate for this allele is quite old but with a huge 95% confidence interval. Hopefully ancient DNA can illuminate the trajectory of the allele's frequency through time and space.

Razib has more.

PLoS Genet 9(11): e1003912. doi:10.1371/journal.pgen.1003912

The Light Skin Allele of SLC24A5 in South Asians and Europeans Shares Identity by Descent

Chandana Basu Mallick et al.

Skin pigmentation is one of the most variable phenotypic traits in humans. A non-synonymous substitution (rs1426654) in the third exon of SLC24A5 accounts for lighter skin in Europeans but not in East Asians. A previous genome-wide association study carried out in a heterogeneous sample of UK immigrants of South Asian descent suggested that this gene also contributes significantly to skin pigmentation variation among South Asians. In the present study, we have quantitatively assessed skin pigmentation for a largely homogeneous cohort of 1228 individuals from the Southern region of the Indian subcontinent. Our data confirm significant association of rs1426654 SNP with skin pigmentation, explaining about 27% of total phenotypic variation in the cohort studied. Our extensive survey of the polymorphism in 1573 individuals from 54 ethnic populations across the Indian subcontinent reveals wide presence of the derived-A allele, although the frequencies vary substantially among populations. We also show that the geospatial pattern of this allele is complex, but most importantly, reflects strong influence of language, geography and demographic history of the populations. Sequencing 11.74 kb of SLC24A5 in 95 individuals worldwide reveals that the rs1426654-A alleles in South Asian and West Eurasian populations are monophyletic and occur on the background of a common haplotype that is characterized by low genetic diversity. We date the coalescence of the light skin associated allele at 22–28 KYA. Both our sequence and genome-wide genotype data confirm that this gene has been a target for positive selection among Europeans. However, the latter also shows additional evidence of selection in populations of the Middle East, Central Asia, Pakistan and North India but not in South India.

Link

November 05, 2012

GWAS study of pigmentation in four European countries

From the paper:
Males (M) have consistently lighter pigmentation (lower scored) than females (F) in all four countries. Among countries, the largest pigmentation difference is with Ireland, where, in our sample, individuals have lighter pigmentation or lower M index on average than in Poland, Italy, or Portugal. Hair pigmentation histogram (C) and boxplot by country (D) in 341 individuals showing the distribution of hair pigmentation and the differences among countries. In our sample, individuals from Northern European countries (Ireland, Poland) have on average lighter hair pigmentation than individuals from Southern European countries (Italy, Portugal). The distributions in males are similar to those in females in all countries except Ireland, where, in our sample, males have darker hair color than females (not shown). Eye pigmentation histogram (E) and boxplot by country (F) in 468 individuals showing the bimodal distribution of eye pigmentation and the differences among countries. Comparison with self-reported phenotypes shows that the two modes of the distribution correspond to blue and brown eye color, while individuals reporting green and hazel eye color have intermediate C’ values. As with hair pigmentation, in our sample, individuals from Northern European countries have on average lighter eye pigmentation than individuals from Southern European countries. 
...   
Interestingly, our analysis of variation in skin color in Europe demonstrates a consistent difference in skin color between the sexes. By the DermaSpectrometer M index measure, males are more lightly pigmented than females in each of the four European countries we studied. The same trend in M index was reported previously in a sample of European Americans [38]. Our results in populations of European ancestry contradict earlier anthropological studies that have concluded females are more lightly pigmented than males in most populations (reviewed in [2]). One potential reason for the conflicting results is the different instruments used. In early studies, which used the Evans Electric Limited (EEL) and Photovolt broad-spectrum spectrophotometers, skin pigmentation estimates may be confounded by the hemoglobin level to a greater extent than for the DermaSpectrometer used in the present study [46].

Some data (lower = lighter):



One thing of interest is that while Irish males/females are both lighter-eyed than other Europeans, including Poles from northern Europe, Irish females appear to be lighter-haired than Irish males (96.3 vs. 106.7), but no such substantial sex difference exists in the Poles in this trait (107.5 vs. 109.5). Sexual dimorphism seems to lean in the direction of lighter male skins and lighter female hair across the four countries.

Peter Frost has offered the theory that "gentlemen prefer blondes" because during the Ice Age boreal hunters lived a harsh lifestyle that killed many of them, but the remainder could not adopt a polygynous lifestyle, because provisioning for a wife was expensive. As a result, women had to compete for the remaining men, and men could be picky, preferring those with a "rare color advantage." It is not immediately clear to me how this might explain the Ireland vs. Poland differentiation, assuming it reflects a broader NW/NE trend, since NE Europeans are more likely to be descended from hunter-gatherers of the tundra-steppe.

PLoS ONE 7(10): e48294. doi:10.1371/journal.pone.0048294

Genome-Wide Association Studies of Quantitatively Measured Skin, Hair, and Eye Pigmentation in Four European Populations

Sophie I. Candille et al.

Pigmentation of the skin, hair, and eyes varies both within and between human populations. Identifying the genes and alleles underlying this variation has been the goal of many candidate gene and several genome-wide association studies (GWAS). Most GWAS for pigmentary traits to date have been based on subjective phenotypes using categorical scales. But skin, hair, and eye pigmentation vary continuously. Here, we seek to characterize quantitative variation in these traits objectively and accurately and to determine their genetic basis. Objective and quantitative measures of skin, hair, and eye color were made using reflectance or digital spectroscopy in Europeans from Ireland, Poland, Italy, and Portugal. A GWAS was conducted for the three quantitative pigmentation phenotypes in 176 women across 313,763 SNP loci, and replication of the most significant associations was attempted in a sample of 294 European men and women from the same countries. We find that the pigmentation phenotypes are highly stratified along axes of European genetic differentiation. The country of sampling explains approximately 35% of the variation in skin pigmentation, 31% of the variation in hair pigmentation, and 40% of the variation in eye pigmentation. All three quantitative phenotypes are correlated with each other. In our two-stage association study, we reproduce the association of rs1667394 at the OCA2/HERC2 locus with eye color but we do not identify new genetic determinants of skin and hair pigmentation supporting the lack of major genes affecting skin and hair color variation within Europe and suggesting that not only careful phenotyping but also larger cohorts are required to understand the genetic architecture of these complex quantitative traits. Interestingly, we also see that in each of these four populations, men are more lightly pigmented in the unexposed skin of the inner arm than women, a fact that is underappreciated and may vary across the world.

Link

August 27, 2012

When Eurasians got lighter skin

My default position is to doubt all molecular dates until I understand how they were derived. Nonetheless, these results seem broadly consistent with the idea that Eurasian modern humans got lighter as their ancestors moved into more northern latitudes of the Old World and replaced Neandertals and others earlier Eurasian occupants, and then they got really lighter post-LGM, and then some got really really lighter with mutations in genes such as SLC24A4 (not studied here).

I suppose we will really find out who got what mutation when only through ancient DNA.

Mol Biol Evol (2012) doi: 10.1093/molbev/mss207

The timing of pigmentation lightening in Europeans

Sandra Belezal et al.

The inverse correlation between skin pigmentation and latitude observed in human populations is thought to have been shaped by selective pressures favoring lighter skin in order to facilitate vitamin D synthesis in regions far from the equator. Several candidate genes for skin pigmentation have been shown to exhibit patterns of polymorphism that overlap the geospatial variation in skin color. However, little work has focused on estimating the timeframe over which skin pigmentation has changed and on the intensity of selection acting on different pigmentation genes. To provide a temporal framework for the evolution of lighter pigmentation, we used forward Monte Carlo simulations coupled with a rejection sampling algorithm to estimate the time of onset of selective sweeps and selection coefficients at four genes associated with this trait in Europeans: KITLG, TYRP1, SLC24A5, and SLC45A2. Using compound haplotype systems consisting of rapidly evolving microsatellites linked to one SNP in each gene, we estimate that the onset of the sweep shared by Europeans and East Asians at KITLG occurred about 30,000 years ago, after the out-of-Africa migration, while the selective sweeps for the European-specific alleles at TYRP1, SLC24A5, and SLC45A2 started much later, within the last 11,000-19,000 years, well after the first migrations of modern humans into Europe. We suggest that these patterns were influenced by recent increases in size of human populations, which favored the accumulation of advantageous variants at different loci.

Link

June 24, 2012

SMBE 2012 abstracts (Part II)

Some more abstracts from SMBE 2012.


The Neolithic trace in mitochondrial haplogroup U8 
Joana Barbosa Pereira 1,2 , Marta Daniela Costa 1,2 , Pedro Soares 2 , Luísa Pereira 2,3 , Martin Brian Richards 1,4 1 Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, 2 Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,  3 Faculdade de Medicina da  Universidade do Porto, Porto, Portugal,  4 School of Applied Sciences, University of Huddersfield, Huddersfield, UK  

The mitochondrial DNA (mtDNA) still remains an important marker in the study of human history, especially if  considering the increasing amount of data available. Among the several questions regarding human history that are  under debate, the model of expansion of agriculture into Europe from its source in the Near East is still unclear. Recent  studies have indicated that clusters belonging to haplogroup K, a major clade from U8, might be related with the  Neolithic expansions. Therefore, it is crucial to identify the founder lineages of the Neolithic in Europe so that we may  understand the real genetic input of the first Near Eastern farmers in the current European population and comprehend  how agriculture spread so quickly throughout all Europe.  In order to achieve this goal, a total of 55 U8 samples from the Near East, Europe and North Africa were selected for  complete characterisation of mtDNA. A maximum-parsimonious phylogenetic tree was constructed using all published  sequences available so far. Coalescence ages of specific clades were estimated using ρ statistic, maximum likelihood  and Bayesian methods considering a mutation rate for the complete molecule corrected for purifying selection.   Our results show that U8 dates to ~37-54 thousand years ago (ka) suggesting that this haplogroup might have been  carried by the first modern humans to arrive in Europe, ~50 ka. Haplogroup K most likely originated in the Near East  ~23-32 ka where it might have remained during the Last Glacial Maximum, between 26-19 years ago. The majority of K  subclades date to the Late Glacial and are related with the repopulation of Europe from the southern refugia areas. Only  a few lineages appear to reflect post glacial, Neolithic or post-Neolithic expansions, mostly occurring within Europe. The  major part of the lineages dating to the Neolithic period seems to have an European origin with exception of haplogroup  K1a4 and K1a3. Clade K1a4 appears to be originated from the Near East where it also reaches its highest peak of  diversity. Despite the main clades of K1a4 arose in the Near East during the Late Glacial, its subclade K1a4a1 dates to  ~9-11 ka and is most likely related with the Neolithic dispersal to Europe. Similarly, K1a3 probably originated in the Near  East during the Late Glacial and its subclade K1a1a dispersed into Europe ~11-13 ka alongside with the expansion of  agriculture. 
Late Glacial Expansions in Europe revealed through the fine-resolution characterisation of mtDNA haplogroup  U8 
Marta Daniela Costa 1,2 , Joana Barbosa Pereira 1,2 , Pedro Soares 2 , Luisa Pereira 2,3 , Martin Brian Richards 1,4 1 Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, 2 IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,  3 Faculdade de  Medicina, Universidade do Porto, Porto, Portugal,  4 School of Applied Sciences, University of Huddersfield, Huddersfield,  UK  

The maternally inherited and fast evolving mitochondrial DNA (mtDNA) molecule is a highly informative tool with which  to reconstruct human prehistory. This has become even more true in recent years, as mtDNA based studies are  becoming more robust and powerful due to the availability of complete mtDNA genomes. These allow better mutation  rate estimates and fine-resolution characterisation of the phylogeography of mtDNA haplogroups, or named  clades.  MtDNA haplogroup K, the major subclade of U8, occurs at low frequencies through West Eurasian populations,  and is much more common in Ashkenazi Jews. However, the lack of variation on the first hypervariable segment (HVSI) has precluded any meaningful phylogeographic analysis to date. We therefore completely sequenced 50 haplogroup  K and 5 non-K U8 mtDNA samples from across Europe and the Near East, and combined them with 343 genomes  previously deposited in GenBank, in order to reconstruct a detailed phylogenetic tree. By combining several inference  methods, including maximum parsimony, maximum likelihood and Bayesian inference it was possible to trace the  timescale and geography of the main expansions and dispersals associated with this lineage. We confirmed that  haplogroup K, dating to ~32 thousand years (ka) ago, descended from the U8 clade, which coalesces ~48 ka ago. The  latter is close to the timing of the first arrival of modern humans in Europe and U8 could be one of the few surviving  mtDNA lineages brought by the first settlers from the Near East. U8 split into the widespread U8b, at ~43 ka, and U8a,  which seems to have expanded only in Europe ~24 ka ago. Considering the pattern of diversity and the geographic  distribution, haplogroup K is most likely to have arisen in the Near East, ~32 ka ago. However, some subclades were  evidently carried to Europe during the Last Glacial Maximum (LGM). We observed significant expansions of haplogroup  K lineages in the Late Glacial period (14-19 ka), reflecting expansions out of refuge areas in southwest and possibly  also southeast Europe. 

Reticulated origin of domesticated tetraploid wheat 
Peter Civan Centro de Ciencias do Mar, Universidade do Algarve, Faro, Portugal  

The past 15 years have witnessed a notable scientific interest in the topic of crop domestication and the emergence of  agriculture in the Near East. Multi-disciplinary approaches brought a significant amount of new data and a multitude of  hypotheses and interpretations. However, some seemingly conflicting evidence, especially in the case of emmer wheat,  caused certain controversy and a broad scientific consensus on the circumstances of the wheat domestication has not  been reached, yet.  The past phylogenetic research has translated the issue of wheat domestication into somewhat simplistic mono- /polyphyletic dilemma, where the monophyletic origin of a crop signalizes rapid and geographically localized  domestication, while the polyphyletic evidence suggests independent, geographically separated domestication events.  Interestingly, the genome-wide and haplotypic data analyzed in several studies did not yield consistent results and the  proposed scenarios are usually in conflict with the archaeological evidence of lengthy domestication.  Here I suggest that the main cause of the above mentioned inconsistencies might lie in the inadequacy of the divergent,  tree-like evolutional model. The inconsistent phylogenetic results and implicit archaeological evidence indicate a  reticulate (rather than divergent) origin of domesticated emmer. Reticulated genealogy cannot be properly represented  on a phylogenetic tree; hence different sets of samples and genetic loci are prone to conclude different domestication  scenarios. On a genome-wide super-tree, the conflicting phylogenetic signals are suppressed and the origin of  domesticated crop may appear monophyletic, leading to misinterpretations of the circumstances of the Neolithic  transition.  The network analysis of multi-locus sequence data available for tetraploid wheat clearly supports the reticulated origin of  domesticated emmer and durum wheat. The concept of reticulated genealogy of domesticated wheat sheds new light  onto the emergence of Near-Eastern agriculture and is in agreement with current archaeological evidence of protracted  and dispersed emmer domestication.

High-coverage population genomics of diverse African hunter-gatherers 
Joseph Lachance 1 , Benjamin Vernot 2 , Clara Elbers 1 , Bart Ferwerda 1 , Alain Froment 3 , Jean-Marie Bodo 4 , Godfrey  Lema 5 , Thomas Nyambo 5 , Timothy Rebbeck 1 , Kun Zhang 6 , Joshua Akey 2 , Sarah Tishkoff 1 1 University of Pennsylvania, Philadelphia, PA, USA,  2 University of Washington, Seattle, WA, USA,  3 IRD-MNHN, Musee  de l'Homme, Paris, France,  4 Ministere de la Recherche Scientifique et de l’Innovation, Yaounde, Cameroon,  5 Muhimbili  University College of Health Sciences, Dar es Salaam, Tanzania,  6 University of California at San Diego, San Diego, CA,  USA     
In addition to their distinctive subsistence patterns, African hunter-gatherers belong to some of the most genetically  diverse populations on Earth.  To infer demographic history and detect signatures of natural selection, we sequenced  the whole genomes of five individuals in each of three geographically and linguistically diverse African hunter-gatherer  populations at >60x coverage.  In these 15 genomes we identify 13.4 million variants, many of which are novel,  substantially increasing the set of known human variation.  These variants result in allele frequency distributions that are  free of SNP ascertainment bias.  This genetic data is used to infer population divergence times and demographic history  (including population bottlenecks and inbreeding).  We find that natural selection continues to shape the genomes of  hunter-gatherers, and that deleterious genetic variation is found at similar levels for hunter-gatherers and African  populations with agricultural or pastoral subsistence patterns.  In addition, the genomes of each hunter-gatherer  population contain unique signatures of local adaptation.  These highly-divergent genomic regions include genes  involved in immunity, metabolism, olfactory and taste perception, reproduction, and wound healing.

Reconstructing past Native American genetic diversity in Puerto Rico from contemporary populations Marina Muzzio 1,2 , Fouad Zakharia 1 , Karla Sandoval 1 , Jake K. Byrnes 3 , Andres Moreno-Estrada 1 , Simon Gravel 1 , Eimear  Kenny 1 , Juan L. Rodriguez-Flores 5 , Chris R. Gignoux 6 , Wilfried Guiblet 4 , Julie Dutil 7 , The 1000 Genomes Consortium 0 ,  Andres Ruiz-Linares 8 , David Reich 9,10 , Taras K. Oleksyk 4 , Juan Carlos Martinez-Cruzado 4 , Esteban Gonzalez  Burchard 6 , Carlos D. Bustamante 1 1 Department of Genetics, Stanford University School of Medicine, Stanford, California, USA,  2 Facultad de Ciencias  Naturales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina,  3 Ancestry. com®, San Francisco,  California, USA,  4 Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico,  5 Department  of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA,  6 Institute for Human Genetics,  University of California San Francisco, San Francisco, California, USA,  7 Ponce School of Medicine, Ponce, Puerto Rico, 8 Department of Genetics, Evolution and Environment. University College London, London, UK,  9 Department of  Genetics, Harvard Medical School, Boston, Massachusetts, USA,  10 Broad Institute of MIT and Harvard, Cambridge,  Massachusetts, USA  

The Caribbean region has a rich cultural and biological diversity, including several countries with different languages,  and important historical events like the arrival of the Europeans in the late fifteenth century affected it deeply. Although it  has been said that two main Native American groups peopled the Caribbean at the time of Columbus’s voyages—the  Arawakan-speaking Tainos and the Caribs—this model has been questioned because it comes from the descriptions  written by the conquerors. The archaeological record shows a richer picture of trade among the islands, cultural change  and diversity than what colonial documents depict, from the early settlements around 8000 B.P. to the chiefdoms and  towns at the time of contact. How this area was peopled and how its inhabitants interacted with the surrounding  continent are questions that remain to be answered due to the fragmentary nature of the historical and archaeological  records.   
We aim to reconstruct the Native American genetic diversity from the time of the Spanish arrival at the island of Puerto  Rico from its contemporary population. We seek to find out how the original peopling of Puerto Rico occurred, along  with which contemporary Native American populations are the most closely related to the Native tracks found. We used  PCAdmix to trace Native American segments in admixed individuals, thus enabling us to reconstruct the original native  lineages previous to the European and African contact.   

Specifically, we generated local ancestry calls for the 70 parents of the 35 complete Puerto Rican trios from the wholegenome and Illumina Omni 2.5M chip Genotype data of the 1000 Genomes Project, both to examine genome-wide  admixture patterns and to infer demographic historical events from ancestry tract length distributions and an ancestryspecific PCA approach, adding 55 Native American groups as potential source populations (N=475 genotyped through  Illumina’s 650K array) and 15 selected Mexican trios (genotyped on Affymetrix’s 6.0 array, including about 906,000  SNPs) to provide population context. ADMIXTURE analysis has shown that in Puerto Rico there is no single source of  contribution for the Native component. Rather, this component seems to include a mixture of major Mexican and  Andean components with little contributions from the Amazonian isolates. On the other hand, the ancestry-specific PCA  plotted the Puerto Rican Native segments tightly clustered with the Native segments of groups from the same language  family as the Tainos (Equatorial-Tucanoan), showing a clear association between linguistics and genetics instead of a  geographical one.
 Inference of demographic history and natural selection in African Pygmy populations from whole-genome  sequencing data
 Martin Sikora 1 , Etienne Patin 2 , Helio Costa 1 , Katherine Siddle 2 , Brenna M Henn 1 , Jeffrey M Kidd 1,3 , Ryosuke Kita 1 ,  Carlos D Bustamante 1 , Lluis Quintana-Murci 2 1 Department of Genetics, School of Medicine, Stanford Uni, Stanford, CA, USA,  2 Unit of Human Evolutionary Genetics,  Institut Pasteur, CNRS URA3012, Paris, France,  3 Departments of Human Genetics and Computational Medicine and  Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA     

The Pygmy populations of Central Africa are some of the last remaining hunter-gatherers among present-day human  populations, and can be broadly classified into two geographically separated groups, the Western and Eastern Pygmies.  Compared to their neighboring populations of predominantly Bantu origin, Pygmy populations show distinct cultural and  physical characteristics, most notably short stature, often referred to as the “Pygmy phenotype”. Given their distinct  physical characteristics, the questions of the demographic history and origin of the Pygmy phenotype have attracted  much attention. Previous studies have shown an ancient divergence (~60,000 years ago) of the ancestors of modernday Pygmies from non-Pygmies, and a more recent split of the Eastern and Western Pygmy groups. However, these  studies were generally based on a relatively small set of markers, precluding accurate estimations of demographic  parameters. Furthermore, despite the considerable interest, to date there is still little known about the genetic basis of  the small stature phenotype of Pygmy populations.   
In order to address these questions, we sequenced the genomes of 47 individuals from three populations: 20 Baka, a  Pygmy hunter-gatherer population from the Western subgroup of the African Pygmies; 20 Nzebi, a neighboring nonPygmy agriculturist population from the Bantu ethnolinguistic group; as well as 7 Mbuti, Eastern Pygmy population, from  the Human Genome Diversity Project (HGDP). We performed whole-genome sequencing using Illumina Hi-Seq 2000 to  a median sequencing depth of 5.5x per individual. After stringent quality control filters, we call over 17 Million SNPs  across the three populations, 32% of them novel (relative to dbSNP 132). Genotype accuracy after imputation was  assessed using genotype data from the Illumina OMNI1 SNP array, and error rates were found to be comparable to  other low-coverage studies (< 3% for most individuals). Preliminary results show relatively low genetic differentiation  between the Baka and the Nzebi (mean FST = 0.026), whereas the Mbuti show higher differentiation to both Baka and  Nzebi (mean FST = 0.060 and 0.070, respectively). Furthermore, we find that alleles previously found to be associated with height in other populations are not enriched for the “small” alleles in the Pygmy populations. We find a number of  highly differentiated genomic regions as candidate loci for height differentiation, which will be verified using simulations  under the best-fit demographic model, inferred from multi-dimensional allele frequency spectra using DaDi. Our dataset  will allow a detailed investigation of the demographic history and the genomics of adaptation in these populations.
Genetic structure in North African human populations and the gene flow to Southern Europe
Laura R Botigué 1 , Brenna M Henn 2 , Simon Gravel 2 , Jaume Bertranpetit 1 , Carlos D Bustamante 2 , David Comas 1 1 Institut de Biologia Evolutiva (IBE, CSIC-UPF), Barcelona, Spain,  2 Stanford University, Stanford CA, USA Despite being in the African continent and at the shores of the Mediterranean, North African populations might have  experienced a different population history compared to their neighbours. However, the extent of their genetic divergence  and gene flow from neighbouring populations is poorly understood. In order to establish the genetic structure of North  Africans and the gene flow with the Near East, Europe and sub-Saharan Africa, a genomewide SNP genotyping array  data (730,000 sites) from several North African and Spanish populations were analysed and compared to a set of  African, European and Middle Eastern samples. We identify a complex pattern of autochthonous, European, Near  Eastern, and sub-Saharan components in extant North African populations; where the autochthonous component  diverged from the European and Near Eastern component more than 12,000 years ago, pointing to a pre-Neolithic  ‘‘back-to-Africa’’ gene flow. To estimate the time of migration from sub-Saharan populations into North Africa, we  implement a maximum likelihood dating method based on the frequency and length distribution of migrant tracts, which  has suggested a migration of western African origin into Morocco ~1,200 years ago and a migration of individuals with  Nilotic ancestry into Egypt ~ 750 years ago.  We characterize broad patterns of recent gene flow between Europe and Africa, with a gradient of recent African  ancestry that is highest in southwestern Europe and decreases in northern latitudes. The elevated shared African  ancestry in SW Europe (up to 20% of the individuals’ genomes) can be traced to populations in the North African  Maghreb. Our results, based on both allele-frequencies and shared haplotypes, demonstrate that recent migrations from  North Africa substantially contribute to the higher genetic diversity in southwestern Europe

Estimating a date of mixture of ancestral South Asian populations
Priya Moorjani 1,2 , Nick Patterson 2 , Periasamy Govindaraj 3 , Danish Saleheen 4 , John Danesh 4 , Lalji Singh* 3,5 ,  Kumarasamy Thangaraj* 3 , David Reich* 1,2 1 Harvard University, Boston, Massachusetts, USA,  2 Broad Institute, Cambridge, Massachusetts, USA,  3 Centre for  Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India,  4 Dept of Public Health and Care, University of  Cambridge, Cambridge, UK,  5 Genome Foundation, Hyderabad, Andhra Pradesh, India Linguistic and genetic studies have demonstrated that almost all groups in South Asia today descend from a mixture of  two highly divergent populations: Ancestral North Indians (ANI) related to Central Asians, Middle Easterners and  Europeans, and Ancestral South Indians (ASI) not related to any populations outside the Indian subcontinent. ANI and  ASI have been estimated to have diverged from a common ancestor as much as 60,000 years ago, but the date of the  ANI-ASI mixture is unknown. Here we analyze data from about 60 South Asian groups to estimate that major ANI-ASI  mixture occurred 1,200-4,000 years ago. Some mixture may also be older—beyond the time we can query using  admixture linkage disequilibrium—since it is universal throughout the subcontinent: present in every group speaking  Indo-European or Dravidian languages, in all caste levels, and in primitive tribes. After the ANI-ASI mixture that  occurred within the last four thousand years, a cultural shift led to widespread endogamy, decreasing the rate of  additional mixture.   
Long IBD in Europeans and recent population history 
Peter Ralph, Graham Coop  UC Davis, Davis, CA, USA  
Numbers of common ancestors shared at various points in time across populations  can tell us about recent demography, migration, and population movements.  These rates of shared ancestry over tens of generations can be inferred from  genomic data, thereby dramatically increasing our ability to infer population  history much more recent than was previously possible with population genetic  techniques.  We have analyzed patterns of IBD in a dataset of thousands of  Europeans from across the continent, which provide a window into recent  European geographic structure and migration.   
Gene flow between human populations during the exodus from Africa, and the timeline of recent human  evolution  
Aylwyn Scally, Richard Durbin  Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK 
We present a novel test for historical gene flow between populations using unphased genotypes in present-day  individuals, based on the sharing of derived alleles and making a minimal set of assumptions about their demographic  history. We apply this test to data for three human individuals of African, European and Asian ancestry. We find that the  joint distribution of European and Asian genotypes is compatible with these populations having separated cleanly at  some time in the past without subsequent genetic exchange. However the same is not true of the European-African and  Asian-African distributions, which instead suggest an extended period of continued exchange between African and nonAfrican populations after their initial separation. 
We discuss this in comparison with recent models and estimates of separation time between these populations. We  also consider the impact of recent direct experimental studies of the human mutation rate, which suggest rates of  around 0.5 × 10 -9  bp -1  y -1 , substantially lower than prior estimates of 1 × 10 -9  bp -1  y -1  obtained from calibration against  the primate fossil record. We show that in several places the lower rate, implying older dates, yields better agreement  between genetic and non-genetic (paleoanthropological and archaeological) evidence for events surrounding the  exodus of modern humans from Africa and their dispersion worldwide.
Long-term presence versus recent admixture: Bayesian and approximate-Bayesian analyses of genetic  diversity of human populations in Central Asia 
Friso Palstra, Evelyne Heyer, Frederic Austerlitz  Eco-anthropologie et Ethnobiologie UMR 7206 CNRS, Equipe Genetique des Populations Humaines, Museum National  d'Histoire Naturelle, Paris, France 
A long-standing goal in population genetics is to unravel the relative importance of evolutionary forces that shape  genetic diversity. Here we focus on human populations in Central Asia, a region that has long been known to contain  the highest genetic diversity on the Eurasian continent. However, whether this variation principally reflects long-term  presence, or rather the result of admixture associated with repeated migrations into this region in more recent historical  times, remains unclear. Here we investigate the underlying demographic history of Central Asian populations in explicit  relation to Western Europe, Eastern Asia and the Middle East. For this purpose we employ both full Bayesian and  approximate-Bayesian analyses of nuclear genetic diversity in 20 unlinked non-coding resequenced DNA regions,  known to be at least 200 kb apart from any known gene, mRNA or spliced EST (total length of 24 kb), and 22 unlinked  microsatellite loci.   
Using an approximate Bayesian framework, we find that present patterns of genetic diversity in Central Asia may be  best explained by a demographic history which combines long-term presence of some ethnic groups (Indo-Iranians)  with a more recent admixed origin of other groups (Turco-Mongols). Interestingly, the results also provide indications  that this region might have genetically influenced Western European populations, rather than vice versa. A further  evaluation in MCMC-based Bayesian analyses of isolation-with-migration models confirms the different times of  establishment of ethnic groups, and suggests gene flow into Central Asia from the east. The results from the  approximate Bayesian and full Bayesian analyses are thus largely congruent. In conclusion, these analyses illustrate  the power of Bayesian inference on genetic data and suggest that the high genetic diversity in Central Asia reflects both  long-term presence and admixture in more recent historical times. 
Population structure and evidence of selection in the Khoe-San and Coloured populations from southern Africa 
Carina Schlebusch 1 , Pontus Skoglund 1 , Per Sjödin 1 , Lucie Gattepaille 1 , Sen Li 1 , Flora Jay 2 , Dena Hernandez 3 , Andrew  Singleton 3 , Michael Blum 2 , Himla Soodyall 4,5 , Mattias Jakobsson 1 1 Uppsala University, Uppsala, Sweden,  2 Université Joseph Fourier, Grenoble, France,  3 National Institute on Aging (NIH),  Bethesda, USA,  4 University of the Witwatersrand, Johannesburg, South Africa,  5 National Health Laboratory Service,  Johannesburg, South Africa  

The San and Khoe people currently represent remnant groups of a much larger and widely distributed population of  hunter-gatherers and pastoralists who had exclusive occupation of southern Africa before the arrival of Bantu-speaking  groups in the past 1,200 years and sea-borne immigrants within the last 350 years. Mitochondrial DNA, Y-chromosome  and autosomal studies conducted on a few San groups revealed that they harbour some of the most divergent lineages  found in living peoples throughout the world.   

We used autosomal data to characterize patterns of genetic variation among southern African individuals in order to  understand human evolutionary history, in particular the demographic history of Africa. To this end, we successfully  genotyped ~ 2.3 million genome wide SNP markers in 220 individuals, comprising seven Khoe-San, two Coloured and  two Bantu-speaking groups from southern Africa. After quality filtering, the data were combined with publicly available  SNP data from other African populations to investigate stratification and demography of African populations.  

We also  applied a newly developed method of estimating population topology and divergence times. Genotypes and inferred  haplotypes were used to assess genetic diversity, patterns of haplotype variation and linkage disequilibrium in different  populations.  We found that six of the seven Khoe-San populations form a common population lineage basal to all other modern  human populations. The studied Khoe-San populations are genetically distinct, with diverse histories of gene flow with  surrounding populations. A clear geographic structuring among Khoe-San groups was observed, the northern and  southern Khoe-San groups were most distinct from each other with the central Khoe-San group being intermediate. The  Khwe group contained variation that distinguished it from other Khoe-San groups. Population divergence within the  Khoe-San group is approximately 1/3 as ancient as the divergence of the Khoe-San as a whole to other human  populations (on the same order as the time of divergence between West Africans and Eurasians). Genetic diversity in  some, but not all, Khoe-San populations is among the highest worldwide, but it is influenced by recent admixture. We  furthermore find evidence of a Nilo-Saharan ancestral component in certain Khoe-San groups, possibly related to the  introduction of pastoralism to southern Africa.   

We searched for signatures of selection in the different population groups by scanning for differentiated genome-regions  between populations and scanning for extended runs of haplotype homozygosity within populations. By means of the  selection scans, we found evidence for diverse adaptations in groups with different demographic histories and modes of  subsistence. 
Impacts of life-style on human evolutionary history: A genome-wide comparison of herder and farmer  populations in Central Asia 
Michael C. Fontaine 1,2 , Laure Segurel 2,3 , Christine Lonjou 4 , Tatiana Hegay 5 , Almaz Aldashev 6 , Evelyne Heyer 2 , Frederic  Austerlitz 1,2 1 Ecology, Systematics & Evolution. UMR8079 Univ. Paris Sud - CNRS - AgroParisTech, Orsay, France,  2 EcoAnthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France, 3 Department of Human Genetics, University of Chicago, Chicago, USA,  4 C2BiG (Centre de  Bioinformatique/Biostatistique Genomique d’Ile de France), Plateforme Post-genomique P3S, Hopital Pitie Salpetriere,  Paris, France,  5 Uzbek Academy of Sciences, Institute of Immunology, Tashkent, Uzbekistan,  6 Institute of Molecular  Biology and Medicine, National Center of Cardiology and Internal Medicine, Bishkek,  

Kyrgyzstan Human populations use a variety of subsistence strategies to exploit an exceptionally broad range of habitats and  dietary components. These aspects of human environments have changed dramatically during human evolution, giving  rise to new selective pressures. Here we focused on two populations in Central Asia with long-term contrasted lifestyles:  Kyrgyz’s that are traditionally nomadic herders, with a traditional diet based on meat and milk products, and Tajiks that  are traditionally agriculturalists, with a traditional diet based mostly on cereals. We genotyped 93 individuals for more  than 600,000 SNP markers (Human-660W-Quad-V1.0 from Illumina) spread across the genome. We first analysed the  population structure of these two populations in the world-wide context by combining our results with other available  genome-wide data. Principal component and Bayesian clustering analyses revealed that Tajiks and Kirgiz’s are both  admixed populations which differed however from each other with respect to their ancestry proportions: Tajiks display a  much larger proportion of common ancestry with European populations while Kirgiz’s share a larger common ancestry  with Asiatic populations. We then examined the region of the genome displaying unusual population differentiation  between these two populations to detect natural selection and checked whether they were specific to Central Asia or  not. We complemented these analyses with haplotype-based analyses of selection. 
Bayesian inference of the demographic history of Niger-Congo speaking populations 
Isabel Alves 1,2 , Lounès Chikhi 2,3 , Laurent Excoffier 1,4 1 CMPG, Institute of Ecology and Evolution, Berne, Switzerland,  2 Population and Conservation Genetics Group, Instituto  Gulbenkian de Ciência, Oeiras, Portugal,  3 CNRS, Université Paul Sabatier, ENFA, Toulouse, France,  4 Swiss Institute of  Bioinformatics, Lausanne, Switzerland  
The Niger-Congo phylum encompasses more than 1500 languages spread over sub-Saharan Africa. This current wide  range is mostly due to the spread of Bantu-speaking people across sub-equatorial regions in the last 4000-5000 years.  Although several genetic studies have focused on the evolutionary history of Bantu-speaking groups, much less effort  has been put into the relationship between Bantu and non-Bantu Niger-Congo groups. Additionally, archaeological and  linguistic evidence suggest that the spread of these populations occurred in distinct directions from the core region  located in what is now the border between Nigeria and Cameroon towards West and South Africa, respectively. We  have performed coalescent simulations within an approximate Bayesian computation (ABC) framework in order to  statistically evaluate the relative probability of alternative models of the spread of Niger-Congo speakers and to infer  demographic parameters underlying these important migration events. We have analysed 61 high-quality microsatellite  markers, genotyped in 130 individuals from three Bantu and three non Bantu-speaking populations, representing a  "Southern wave" or the Bantu expansion, and a "Western wave", respectively. Preliminary results suggest that models  inspired by a spatial spread of the populations are better supported than classical isolation with migration (IM) models.  We also find that Niger-Congo populations currently maintain high levels of gene flow with their neighbours, and that  they expanded from a single source between 200 and 600 generations, even though available genetic data do not  provide enough information to accurately infer these demographic parameters.

A genetic study of skin pigmentation variation in India  
Mircea Iliescu1 , Chandana Basu Mallick 2,3 , Niraj Rai 4 , Anshuman Mishra 4 , Gyaneshwer Chaubey 2 , Rakesh Tamang 4 ,  Märt Möls 3 , Rie Goto 1 , Georgi Hudjashov 2,3 , Srilakshmi Raj 1 , Ramasamy Pitchappan 5 , CG Nicholas Mascie-Taylor 1 , Lalji  Singh 4,6 , Marta Mirazon-Lahr 7 , Mait Metspalu 2,3 , Kumarasamy Thangaraj 4 , Toomas Kivisild 1,3 1 Division of Biological Anthropology, University of Cambridge, Cambridge, UK,  2 Evolutionary Biology Group, Estonian  Biocentre, Tartu, Estonia,  3 Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,  4 Centre for Cellular  and Molecular Biology, Hyderabad, India,  5 Chettinad Academy of Research and Education, Chettinad Health City,  Chennai, India,  6 Banaras Hindu University, Varanasi, India,  7 Leverhulme Centre for Human Evolutionary Studies,  Division of Biological Anthropology, University of Cambridge, Cambridge, UK  

Human skin colour is a polygenic trait that is primarily determined by the amount and type of melanin produced in the  skin. The pigmentation variation between human populations across the world is highly correlated with geographic  latitude and the amount of UV radiation. Association studies together with research involving different model organisms  and coat colour variation have largely contributed to the identification of more than 378 pigmentation candidate genes.  These include TYR OCA2, that are known to cause albinism, MC1R responsible for the red hair phenotype, and genes  such as MATP, SLC24A5 and ASIP that are involved in normal pigmentation variation. In particular, SLC24A5 has been  shown to explain one third of the pigmentation difference between Europeans and Africans. However, the same gene  cannot explain the lighter East Asian phenotype; therefore, light pigmentation could be the result of convergent  evolution. A study on UK residents of Pakistani, Indian and Bangladeshi descent found significant association of  SLC24A5, SLC45A2 and TYR genes with skin colour. While these genes may explain a significant proportion of  interethnic differences in skin colour, it is not clear how much variation such genes explain within Indian populations  who are known for their high level of diversity of pigmentation. We have tested 15 candidate SNPs for association with  melanin index in a large sample of 1300 individuals, from three related castes native to South India. Using logistic  regression model we found that SLC24A5 functional SNP, rs1426654, is strongly associated with pigmentation in our  sample and explains alone more than half of the skin colour difference between the light and the dark group of  individuals. Conversely, the other tested SNPs fail to show any significance; this strongly argues in favour of one gene  having a major effect on skin pigmentation within ethnic groups of South India, with other genes having small additional  effects on this trait. We genotyped the SLC24A5 variant in over 40 populations across India and found that latitudinal  differences alone cannot explain its frequency patterns in the subcontinent. Key questions arising from this research are  when and where did the light skin variant enter South Asia and the manner and reason for it spreading across the Indian  sub-continent. Hence, a comprehensive view of skin colour evolution requires that in depth sequence information be  corroborated with population (genetic) history and with ancient DNA data of past populations of Eurasia



May 12, 2009

Light-pigmented Caucasoids from prehistoric Siberia

This sample was previously tested for Y-chromosome and mtDNA polymorphisms.

The pigmentation-related loci tested can be seen in the labels of my post, which should lead you to some earlier studies on them.

Most individuals were found to be most similar to European than to East Asian or African individuals based on these loci, although some (2 from Andronovo) of them were more similar to East Asians or intermediate (1 from Tagar) between East Asians and Europeans.

Interestingly, 1 of the Andronovo Mongoloids (S07) was previously found to belong to Y chromosome haplogroup C(xC3), while the Caucasoid-Mongoloid individual from Tagar (S32) belonged to haplogroup R1a1.

It should be noted that the use of the term "European individual ancestry" does not mean that these individuals were from Europe, as no test to distinguish between European and Asian Caucasoids was performed, and we know from literary descriptions and occasional archaeological remains about the ancient presence of light-pigmented Caucasoids in Siberia.

From the paper:
The genotype for rs12913832 was obtained for 23 out of the 25 samples, and most had the G/G genotype (n=15), which indicates that at least 60% of ancient specimens were probably blue- or green-eyed individuals. The remaining samples had the A/G (n=5) or A/A (n=3) genotypes, which are predictive of brown eye color phenotype.

International Journal of Legal Medicine doi:10.1007/s00414-009-0348-5

Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis

Caroline Bouakaze et al.

Abstract

In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.

Link

March 25, 2009

Selection in the human genome with HGDP samples

Genetic Future points me to a new paper on signatures of selection in the human genome. Also Gene Expression and John Hawks on the subject, in which he responds to criticism in the paper about his accelerated evolution theory. Go ahead and read these sources for commentary on the paper (which is open view anyway).

I would like to comment on this interesting bit:
In general, we find the evidence for selection on disease risk is not as conclusive as that for selection on pigmentation traits. One parsimonious explanation for this is that However, the role of the genetic architecture of a trait (the number of loci underlying a trait and their effect sizes and frequencies) in how it responds to selection remains largely unexplored. Since the genetic architecture of pigmentation is relatively simple (compared with other complex traits), perhaps a selection signal on this trait is more readily detected because it is selection on disease risk, assuming disease risk is under selection at all, is much weaker than selection on pigmentation.spread across fewer loci. On the other hand, this explanation may confuse cause and effect. Perhaps skin pigmentation has a simpler genetic architecture than other complex traits because it has been subject to recent strong selection—the first moves to a new phenotypic optimum are predicted to be on mutations of large fitness
effect (Orr 2002). So assuming a positive correlation between the effects of an allele on fitness and on a trait, it is also plausible that the relatively simple genetic architecture of skin pigmentation is actually a consequence of the strong selection that has acted on this phenotype. Further work on the interplay between genetic architecture and natural selection is needed to clarify these issues.
In my opinion, there is a fairly clear dependence of pigmentation with environment (exposure to solar radiation) and with geographical latitude. While disease load varied with time and social organization, natural selection for skin pigmentation has been fairly constant: it has always been "better" to possess a dark phenotype in Africa than it is in Europe or Asia.

Depigmentation of Caucasoids and Mongoloids was thus -in all likelihood- a continuous process which invariably resulted in lighter phenotypes compared to the original dark standard. This process initially involved response to reduced solar radiation, but may have been shaped at a later stage by other factors, such as ready access to vitamin D from milk products, or sexual selection for rare phenotypes that seems to have taken hold in northern Europe.

Genome Research doi:10.1101/gr.087577.108

Signals of recent positive selection in a worldwide sample of human populations

Joseph K. Pickrell et al.

Abstract

Genome-wide scans for recent positive selection in humans have yielded insight into the mechanisms underlying the extensive phenotypic diversity in our species, but have focused on a limited number of populations. Here, we present an analysis of recent selection in a global sample of 53 populations, using genotype data from the Human Genome Diversity-CEPH Panel. We refine the geographic distributions of known selective sweeps, and find extensive overlap between these distributions for populations in the same continental region but limited overlap between populations outside these groupings. We present several examples of previously unrecognized candidate targets of selection, including signals at a number of genes in the NRG–ERBB4 developmental pathway in non-African populations. Analysis of recently identified genes involved in complex diseases suggests that there has been selection on loci involved in susceptibility to type II diabetes. Finally, we search for local adaptation between geographically close populations, and highlight several examples.

Link

September 27, 2008

More ASHG 2008 abstracts

The previous batch is here.

Analysis of East Asia Genetic Substructure: Population Differentiation and PCA Clusters Correlate with Geographic Distribution
Accounting for genetic substructure within European populations has been important in reducing type 1 errors in genetic studies of complex disease. As efforts to understand complex genetic disease are expanded to other continental populations an understanding of genetic substructure within these continents will be useful in design and execution of association tests. In this study, population differentiation(Fst) and Principal Components Analyses(PCA) are examined using >200K genotypes from multiple populations of East Asian ancestry(total 298 subjects). The population groups included those from the Human Genome Diversity Panel[Cambodian(CAMB), Yi, Daur, Mongolian(MGL), Lahu, Dai, Hezhen, Miaozu, Naxi, Oroqen, She, Tu, Tujia, Naxi, and Xibo], HapMap(CHB and JPT), and East Asian or East Asian American subjects of Vietnamese(VIET), Korean(KOR), Filipino(FIL) and Chinese ancestry. Paired Fst(Wei and Cockerham) showed close relationships between CHB and several large East Asian population groups(CHB/KOR, 0.0019; CHB/JPT, 00651; CHB/VIET, 0.0065) with larger separation with FIL(CHB/FIL, 0.014). Low levels of differentiation were also observed between DAI and VIET(0.0045) and between VIET and CAMB(0.0062). Similarly, small Fsts were observed among different presumed Han Chinese populations originating in different regions of mainland of China and Taiwan. For example, the four For PCA, the first two PCs showed a pattern of relationships that closely followed the geographic distribution of the different East Asian populations.corner groups were JPT, FIL, CAMB and MGL with the CHB forming the center group, and KOR was between CHB and JPT. Other small ethnic groups were also in rough geographic correlation with their putative origins. These studies have also enabled the selection of a subset of East Asian substructure ancestry informative markers(EASTASAIMS) that may be useful for future genetic association studies in reducing type 1 errors and in identifying homogeneous groups.

Worldwide Population Structure using SNP Microarray Genotyping
We genotyped 348 individuals sampled from 24 populations world-wide using the Affymetrix 250k NspI microarray chip. For context, we added matching genotypes from 210 HapMap individuals for a total of 250,823 loci genotyped in 543 individuals from 28 populations. We included populations from India and Daghestan to provide detail between the genetic poles of Western Europe, East Asia, and sub-Sahara Africa. With so many markers, principal components analyses reveal genetic differentiation between almost all identified populations in our sample. Northern and southern European populations (FST = 0.004, p <0.01) are statistically distinguishable, as are upper and lower caste groups in India (FST = 0.005, p <0.01). All individuals are accurately classified into continental groups, and even between closely-related populations, genetic- and self-classifications conflict for only a minority of individuals (e.g. ~2% between upper and lower Indian castes; k-means clustering.) As expected, the HapMap CHB+JPT, CEU, and YRI samples are most similar to our east Asian, west European, and African samples, respectively. The HapMap CEU samples and our northern European ancestry samples were both collected from Utah. Although individual samples cannot be reliably classified into their collection of origin, the groups are statistically distinguishable despite their high similarity (FST = 0.0005, n.s.). Our Japanese group is also statistically distinguishable from the HapMap JPT group (FST = 0.006, p <0.01), and in this comparison, most samples can be correctly classified. With such large numbers of genotypes, significant differences can be found even between very similar population samplings. Our results provide guidelines for researchers in selecting suitable control populations for case-control studies.


Frequency distribution and selection in 4 pigmentation genes in Europe
Pigmentation is one of the more obvious forms of variation in humans, particularly in Europeans where one sees more within group variation in hair and eye pigmentation than in the rest of the world. We studied 4 genes (SLC24A5, SLC45A2, OCA2 and MC1R) that are believed to contribute to the pigment phenotypes in Europeans. SLC24A5 has a single functional variant that leads to lighter skin pigmentation. Data on 83 populations worldwide (including 55 from our lab) show the variant (at rs1426654) has almost reached fixation in Europe, Southwest Asia, and North Africa, has moderate to high frequencies (.2-.9) throughout Central Asia, and has frequencies of .1-.3 in East and South Africa. The variant is essentially absent elsewhere. SLC45A2 also has a single functional variant (at rs16891982) associated with light skin pigmentation in Europe. Data on 84 populations worldwide show the light skin allele is nearly fixed in Northern Europe but has lower frequencies in Southern Europe, the Middle East and Northern Africa. In Central Asia the frequency of the SLC45A2 variant declines more quickly than the SLC24A5 variant. It is absent in both East and South Africa. In OCA2 we typed 4 SNPs (rs4778138, rs4778241, rs7495174, rs12913832) with a haplotype associated with blue eyes in Europeans. This haplotype shows a Southeastern to Northwestern pattern in Europe with frequencies of .25 (.05 homozygous) in the Adygei to .85 (.75 homozygous) in the Danes. In MC1R we typed 5 SNPs (rs3212345, rs3212357, rs3212363, C_25958294_10, rs7191944) that cover the entire MC1R gene and found a predominantly European haplotype that ranges in frequency from .35 to .65 in Europe, reaching its highest levels in Southwest Asia and Northwestern Europe. Extended Haplotype Heterozygosity (EHH) and normalized Haplosimilarity (nHS) show evidence of selection at SLC24A5 in not only our European and Southwest Asian populations but also our East African populations. Neither SLC45A2 or OCA2 showed evidence of selection in either test. MC1R did not show evidence of selection for our European specific haplotype but we did see some evidence both upstream and downstream in our nHS test in Europe.

Using principal components analysis to identify candidate genes for natural selection.
Genetic markers that differentiate populations are excellent candidates for natural selection due to local adaptation, and may shed light into physiological pathways that underlie disorders with varying frequencies around the world. Principal Components Analysis (PCA) has emerged as a powerful tool for the characterization and analysis of the structure of genomewide datasets. In prior work, we described an algorithm that can be used to select small subsets of genetic markers (SNPs) that correlate well with population structure, as captured by PCA. Our method can be used to detect SNPs that differentiate individuals from different geographic regions, or even neighboring subpopulations. We set out to explore the nature and properties of the genes where population-differentiating SNPs reside, by analyzing the publicly available Human Genome Diversity Panel dataset (650,000 SNPs for 1,043 individuals, 51 populations). Applying our SNP selection algorithms, we chose small subsets of SNPs that almost perfectly reproduce worldwide population structure as identified by PCA. We determined SNP panels both for population differentiation within seven geographic regions, as well as around the globe. We then explored the hypothesis that the selected SNPs attained their current worldwide allele frequency patterns as a response to the pressure of natural selection. Comparing our lists to recently published reports, we found a significant overlap with other genomewide scans for selection, thus validating our hypothesis. For example, EDAR (involved in the development of hair follicles) harbors the most differentiating SNPs in our world-wide panels. SNPs located in genes that are involved in skin and eye pigmentation (OCA2, MYO5C, HERC1, HERC2) are also among the top population differentiating markers. In East Asia, SNPs residing at the ADH cluster appear among the most important SNPs for population structure, while, in Europe, the same is true for genes that are involved in immune response to pathogens (CR1, DUOX2, TLR, and HLA). Finally, a comprehensive gene ontology analysis is presented.