Showing posts with label Wheat. Show all posts
Showing posts with label Wheat. Show all posts

March 01, 2015

8,000 year old wheat in Britain

Britain received farming later than most of Europe, but perhaps it received one of the products of farming well before any farmers set foot on the island. I've always wondered if news (and at least some products) of the agricultural revolution spread far and wide before the revolution itself did. Did foragers at the northwestern end of Europe hear stories of the strange new people that had already appeared 8,000 years ago on the opposite end of the continent?

Was this an isolated incident or will we be finding wheat elsewhere in pre-farming Europe? 

Science 27 February 2015: Vol. 347 no. 6225 pp. 998-1001

Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago 

Oliver Smith et al.

The Mesolithic-to-Neolithic transition marked the time when a hunter-gatherer economy gave way to agriculture, coinciding with rising sea levels. Bouldnor Cliff, is a submarine archaeological site off the Isle of Wight in the United Kingdom that has a well-preserved Mesolithic paleosol dated to 8000 years before the present. We analyzed a core obtained from sealed sediments, combining evidence from microgeomorphology and microfossils with sedimentary ancient DNA (sedaDNA) analyses to reconstruct floral and faunal changes during the occupation of this site, before it was submerged. In agreement with palynological analyses, the sedaDNA sequences suggest a mixed habitat of oak forest and herbaceous plants. However, they also provide evidence of wheat 2000 years earlier than mainland Britain and 400 years earlier than proximate European sites. These results suggest that sophisticated social networks linked the Neolithic front in southern Europe to the Mesolithic peoples of northern Europe.

Link

May 08, 2014

Psychological differences in China predicted by rice/wheat agriculture

Science 9 May 2014: Vol. 344 no. 6184 pp. 603-608
DOI: 10.1126/science.1246850

Large-Scale Psychological Differences Within China Explained by Rice Versus Wheat Agriculture

T. Talhelm et al.

Cross-cultural psychologists have mostly contrasted East Asia with the West. However, this study shows that there are major psychological differences within China. We propose that a history of farming rice makes cultures more interdependent, whereas farming wheat makes cultures more independent, and these agricultural legacies continue to affect people in the modern world. We tested 1162 Han Chinese participants in six sites and found that rice-growing southern China is more interdependent and holistic-thinking than the wheat-growing north. To control for confounds like climate, we tested people from neighboring counties along the rice-wheat border and found differences that were just as large. We also find that modernization and pathogen prevalence theories do not fit the data.

Link

June 24, 2012

SMBE 2012 abstracts (Part II)

Some more abstracts from SMBE 2012.


The Neolithic trace in mitochondrial haplogroup U8 
Joana Barbosa Pereira 1,2 , Marta Daniela Costa 1,2 , Pedro Soares 2 , Luísa Pereira 2,3 , Martin Brian Richards 1,4 1 Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, 2 Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,  3 Faculdade de Medicina da  Universidade do Porto, Porto, Portugal,  4 School of Applied Sciences, University of Huddersfield, Huddersfield, UK  

The mitochondrial DNA (mtDNA) still remains an important marker in the study of human history, especially if  considering the increasing amount of data available. Among the several questions regarding human history that are  under debate, the model of expansion of agriculture into Europe from its source in the Near East is still unclear. Recent  studies have indicated that clusters belonging to haplogroup K, a major clade from U8, might be related with the  Neolithic expansions. Therefore, it is crucial to identify the founder lineages of the Neolithic in Europe so that we may  understand the real genetic input of the first Near Eastern farmers in the current European population and comprehend  how agriculture spread so quickly throughout all Europe.  In order to achieve this goal, a total of 55 U8 samples from the Near East, Europe and North Africa were selected for  complete characterisation of mtDNA. A maximum-parsimonious phylogenetic tree was constructed using all published  sequences available so far. Coalescence ages of specific clades were estimated using ρ statistic, maximum likelihood  and Bayesian methods considering a mutation rate for the complete molecule corrected for purifying selection.   Our results show that U8 dates to ~37-54 thousand years ago (ka) suggesting that this haplogroup might have been  carried by the first modern humans to arrive in Europe, ~50 ka. Haplogroup K most likely originated in the Near East  ~23-32 ka where it might have remained during the Last Glacial Maximum, between 26-19 years ago. The majority of K  subclades date to the Late Glacial and are related with the repopulation of Europe from the southern refugia areas. Only  a few lineages appear to reflect post glacial, Neolithic or post-Neolithic expansions, mostly occurring within Europe. The  major part of the lineages dating to the Neolithic period seems to have an European origin with exception of haplogroup  K1a4 and K1a3. Clade K1a4 appears to be originated from the Near East where it also reaches its highest peak of  diversity. Despite the main clades of K1a4 arose in the Near East during the Late Glacial, its subclade K1a4a1 dates to  ~9-11 ka and is most likely related with the Neolithic dispersal to Europe. Similarly, K1a3 probably originated in the Near  East during the Late Glacial and its subclade K1a1a dispersed into Europe ~11-13 ka alongside with the expansion of  agriculture. 
Late Glacial Expansions in Europe revealed through the fine-resolution characterisation of mtDNA haplogroup  U8 
Marta Daniela Costa 1,2 , Joana Barbosa Pereira 1,2 , Pedro Soares 2 , Luisa Pereira 2,3 , Martin Brian Richards 1,4 1 Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, 2 IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,  3 Faculdade de  Medicina, Universidade do Porto, Porto, Portugal,  4 School of Applied Sciences, University of Huddersfield, Huddersfield,  UK  

The maternally inherited and fast evolving mitochondrial DNA (mtDNA) molecule is a highly informative tool with which  to reconstruct human prehistory. This has become even more true in recent years, as mtDNA based studies are  becoming more robust and powerful due to the availability of complete mtDNA genomes. These allow better mutation  rate estimates and fine-resolution characterisation of the phylogeography of mtDNA haplogroups, or named  clades.  MtDNA haplogroup K, the major subclade of U8, occurs at low frequencies through West Eurasian populations,  and is much more common in Ashkenazi Jews. However, the lack of variation on the first hypervariable segment (HVSI) has precluded any meaningful phylogeographic analysis to date. We therefore completely sequenced 50 haplogroup  K and 5 non-K U8 mtDNA samples from across Europe and the Near East, and combined them with 343 genomes  previously deposited in GenBank, in order to reconstruct a detailed phylogenetic tree. By combining several inference  methods, including maximum parsimony, maximum likelihood and Bayesian inference it was possible to trace the  timescale and geography of the main expansions and dispersals associated with this lineage. We confirmed that  haplogroup K, dating to ~32 thousand years (ka) ago, descended from the U8 clade, which coalesces ~48 ka ago. The  latter is close to the timing of the first arrival of modern humans in Europe and U8 could be one of the few surviving  mtDNA lineages brought by the first settlers from the Near East. U8 split into the widespread U8b, at ~43 ka, and U8a,  which seems to have expanded only in Europe ~24 ka ago. Considering the pattern of diversity and the geographic  distribution, haplogroup K is most likely to have arisen in the Near East, ~32 ka ago. However, some subclades were  evidently carried to Europe during the Last Glacial Maximum (LGM). We observed significant expansions of haplogroup  K lineages in the Late Glacial period (14-19 ka), reflecting expansions out of refuge areas in southwest and possibly  also southeast Europe. 

Reticulated origin of domesticated tetraploid wheat 
Peter Civan Centro de Ciencias do Mar, Universidade do Algarve, Faro, Portugal  

The past 15 years have witnessed a notable scientific interest in the topic of crop domestication and the emergence of  agriculture in the Near East. Multi-disciplinary approaches brought a significant amount of new data and a multitude of  hypotheses and interpretations. However, some seemingly conflicting evidence, especially in the case of emmer wheat,  caused certain controversy and a broad scientific consensus on the circumstances of the wheat domestication has not  been reached, yet.  The past phylogenetic research has translated the issue of wheat domestication into somewhat simplistic mono- /polyphyletic dilemma, where the monophyletic origin of a crop signalizes rapid and geographically localized  domestication, while the polyphyletic evidence suggests independent, geographically separated domestication events.  Interestingly, the genome-wide and haplotypic data analyzed in several studies did not yield consistent results and the  proposed scenarios are usually in conflict with the archaeological evidence of lengthy domestication.  Here I suggest that the main cause of the above mentioned inconsistencies might lie in the inadequacy of the divergent,  tree-like evolutional model. The inconsistent phylogenetic results and implicit archaeological evidence indicate a  reticulate (rather than divergent) origin of domesticated emmer. Reticulated genealogy cannot be properly represented  on a phylogenetic tree; hence different sets of samples and genetic loci are prone to conclude different domestication  scenarios. On a genome-wide super-tree, the conflicting phylogenetic signals are suppressed and the origin of  domesticated crop may appear monophyletic, leading to misinterpretations of the circumstances of the Neolithic  transition.  The network analysis of multi-locus sequence data available for tetraploid wheat clearly supports the reticulated origin of  domesticated emmer and durum wheat. The concept of reticulated genealogy of domesticated wheat sheds new light  onto the emergence of Near-Eastern agriculture and is in agreement with current archaeological evidence of protracted  and dispersed emmer domestication.

High-coverage population genomics of diverse African hunter-gatherers 
Joseph Lachance 1 , Benjamin Vernot 2 , Clara Elbers 1 , Bart Ferwerda 1 , Alain Froment 3 , Jean-Marie Bodo 4 , Godfrey  Lema 5 , Thomas Nyambo 5 , Timothy Rebbeck 1 , Kun Zhang 6 , Joshua Akey 2 , Sarah Tishkoff 1 1 University of Pennsylvania, Philadelphia, PA, USA,  2 University of Washington, Seattle, WA, USA,  3 IRD-MNHN, Musee  de l'Homme, Paris, France,  4 Ministere de la Recherche Scientifique et de l’Innovation, Yaounde, Cameroon,  5 Muhimbili  University College of Health Sciences, Dar es Salaam, Tanzania,  6 University of California at San Diego, San Diego, CA,  USA     
In addition to their distinctive subsistence patterns, African hunter-gatherers belong to some of the most genetically  diverse populations on Earth.  To infer demographic history and detect signatures of natural selection, we sequenced  the whole genomes of five individuals in each of three geographically and linguistically diverse African hunter-gatherer  populations at >60x coverage.  In these 15 genomes we identify 13.4 million variants, many of which are novel,  substantially increasing the set of known human variation.  These variants result in allele frequency distributions that are  free of SNP ascertainment bias.  This genetic data is used to infer population divergence times and demographic history  (including population bottlenecks and inbreeding).  We find that natural selection continues to shape the genomes of  hunter-gatherers, and that deleterious genetic variation is found at similar levels for hunter-gatherers and African  populations with agricultural or pastoral subsistence patterns.  In addition, the genomes of each hunter-gatherer  population contain unique signatures of local adaptation.  These highly-divergent genomic regions include genes  involved in immunity, metabolism, olfactory and taste perception, reproduction, and wound healing.

Reconstructing past Native American genetic diversity in Puerto Rico from contemporary populations Marina Muzzio 1,2 , Fouad Zakharia 1 , Karla Sandoval 1 , Jake K. Byrnes 3 , Andres Moreno-Estrada 1 , Simon Gravel 1 , Eimear  Kenny 1 , Juan L. Rodriguez-Flores 5 , Chris R. Gignoux 6 , Wilfried Guiblet 4 , Julie Dutil 7 , The 1000 Genomes Consortium 0 ,  Andres Ruiz-Linares 8 , David Reich 9,10 , Taras K. Oleksyk 4 , Juan Carlos Martinez-Cruzado 4 , Esteban Gonzalez  Burchard 6 , Carlos D. Bustamante 1 1 Department of Genetics, Stanford University School of Medicine, Stanford, California, USA,  2 Facultad de Ciencias  Naturales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina,  3 Ancestry. com®, San Francisco,  California, USA,  4 Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico,  5 Department  of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA,  6 Institute for Human Genetics,  University of California San Francisco, San Francisco, California, USA,  7 Ponce School of Medicine, Ponce, Puerto Rico, 8 Department of Genetics, Evolution and Environment. University College London, London, UK,  9 Department of  Genetics, Harvard Medical School, Boston, Massachusetts, USA,  10 Broad Institute of MIT and Harvard, Cambridge,  Massachusetts, USA  

The Caribbean region has a rich cultural and biological diversity, including several countries with different languages,  and important historical events like the arrival of the Europeans in the late fifteenth century affected it deeply. Although it  has been said that two main Native American groups peopled the Caribbean at the time of Columbus’s voyages—the  Arawakan-speaking Tainos and the Caribs—this model has been questioned because it comes from the descriptions  written by the conquerors. The archaeological record shows a richer picture of trade among the islands, cultural change  and diversity than what colonial documents depict, from the early settlements around 8000 B.P. to the chiefdoms and  towns at the time of contact. How this area was peopled and how its inhabitants interacted with the surrounding  continent are questions that remain to be answered due to the fragmentary nature of the historical and archaeological  records.   
We aim to reconstruct the Native American genetic diversity from the time of the Spanish arrival at the island of Puerto  Rico from its contemporary population. We seek to find out how the original peopling of Puerto Rico occurred, along  with which contemporary Native American populations are the most closely related to the Native tracks found. We used  PCAdmix to trace Native American segments in admixed individuals, thus enabling us to reconstruct the original native  lineages previous to the European and African contact.   

Specifically, we generated local ancestry calls for the 70 parents of the 35 complete Puerto Rican trios from the wholegenome and Illumina Omni 2.5M chip Genotype data of the 1000 Genomes Project, both to examine genome-wide  admixture patterns and to infer demographic historical events from ancestry tract length distributions and an ancestryspecific PCA approach, adding 55 Native American groups as potential source populations (N=475 genotyped through  Illumina’s 650K array) and 15 selected Mexican trios (genotyped on Affymetrix’s 6.0 array, including about 906,000  SNPs) to provide population context. ADMIXTURE analysis has shown that in Puerto Rico there is no single source of  contribution for the Native component. Rather, this component seems to include a mixture of major Mexican and  Andean components with little contributions from the Amazonian isolates. On the other hand, the ancestry-specific PCA  plotted the Puerto Rican Native segments tightly clustered with the Native segments of groups from the same language  family as the Tainos (Equatorial-Tucanoan), showing a clear association between linguistics and genetics instead of a  geographical one.
 Inference of demographic history and natural selection in African Pygmy populations from whole-genome  sequencing data
 Martin Sikora 1 , Etienne Patin 2 , Helio Costa 1 , Katherine Siddle 2 , Brenna M Henn 1 , Jeffrey M Kidd 1,3 , Ryosuke Kita 1 ,  Carlos D Bustamante 1 , Lluis Quintana-Murci 2 1 Department of Genetics, School of Medicine, Stanford Uni, Stanford, CA, USA,  2 Unit of Human Evolutionary Genetics,  Institut Pasteur, CNRS URA3012, Paris, France,  3 Departments of Human Genetics and Computational Medicine and  Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA     

The Pygmy populations of Central Africa are some of the last remaining hunter-gatherers among present-day human  populations, and can be broadly classified into two geographically separated groups, the Western and Eastern Pygmies.  Compared to their neighboring populations of predominantly Bantu origin, Pygmy populations show distinct cultural and  physical characteristics, most notably short stature, often referred to as the “Pygmy phenotype”. Given their distinct  physical characteristics, the questions of the demographic history and origin of the Pygmy phenotype have attracted  much attention. Previous studies have shown an ancient divergence (~60,000 years ago) of the ancestors of modernday Pygmies from non-Pygmies, and a more recent split of the Eastern and Western Pygmy groups. However, these  studies were generally based on a relatively small set of markers, precluding accurate estimations of demographic  parameters. Furthermore, despite the considerable interest, to date there is still little known about the genetic basis of  the small stature phenotype of Pygmy populations.   
In order to address these questions, we sequenced the genomes of 47 individuals from three populations: 20 Baka, a  Pygmy hunter-gatherer population from the Western subgroup of the African Pygmies; 20 Nzebi, a neighboring nonPygmy agriculturist population from the Bantu ethnolinguistic group; as well as 7 Mbuti, Eastern Pygmy population, from  the Human Genome Diversity Project (HGDP). We performed whole-genome sequencing using Illumina Hi-Seq 2000 to  a median sequencing depth of 5.5x per individual. After stringent quality control filters, we call over 17 Million SNPs  across the three populations, 32% of them novel (relative to dbSNP 132). Genotype accuracy after imputation was  assessed using genotype data from the Illumina OMNI1 SNP array, and error rates were found to be comparable to  other low-coverage studies (< 3% for most individuals). Preliminary results show relatively low genetic differentiation  between the Baka and the Nzebi (mean FST = 0.026), whereas the Mbuti show higher differentiation to both Baka and  Nzebi (mean FST = 0.060 and 0.070, respectively). Furthermore, we find that alleles previously found to be associated with height in other populations are not enriched for the “small” alleles in the Pygmy populations. We find a number of  highly differentiated genomic regions as candidate loci for height differentiation, which will be verified using simulations  under the best-fit demographic model, inferred from multi-dimensional allele frequency spectra using DaDi. Our dataset  will allow a detailed investigation of the demographic history and the genomics of adaptation in these populations.
Genetic structure in North African human populations and the gene flow to Southern Europe
Laura R Botigué 1 , Brenna M Henn 2 , Simon Gravel 2 , Jaume Bertranpetit 1 , Carlos D Bustamante 2 , David Comas 1 1 Institut de Biologia Evolutiva (IBE, CSIC-UPF), Barcelona, Spain,  2 Stanford University, Stanford CA, USA Despite being in the African continent and at the shores of the Mediterranean, North African populations might have  experienced a different population history compared to their neighbours. However, the extent of their genetic divergence  and gene flow from neighbouring populations is poorly understood. In order to establish the genetic structure of North  Africans and the gene flow with the Near East, Europe and sub-Saharan Africa, a genomewide SNP genotyping array  data (730,000 sites) from several North African and Spanish populations were analysed and compared to a set of  African, European and Middle Eastern samples. We identify a complex pattern of autochthonous, European, Near  Eastern, and sub-Saharan components in extant North African populations; where the autochthonous component  diverged from the European and Near Eastern component more than 12,000 years ago, pointing to a pre-Neolithic  ‘‘back-to-Africa’’ gene flow. To estimate the time of migration from sub-Saharan populations into North Africa, we  implement a maximum likelihood dating method based on the frequency and length distribution of migrant tracts, which  has suggested a migration of western African origin into Morocco ~1,200 years ago and a migration of individuals with  Nilotic ancestry into Egypt ~ 750 years ago.  We characterize broad patterns of recent gene flow between Europe and Africa, with a gradient of recent African  ancestry that is highest in southwestern Europe and decreases in northern latitudes. The elevated shared African  ancestry in SW Europe (up to 20% of the individuals’ genomes) can be traced to populations in the North African  Maghreb. Our results, based on both allele-frequencies and shared haplotypes, demonstrate that recent migrations from  North Africa substantially contribute to the higher genetic diversity in southwestern Europe

Estimating a date of mixture of ancestral South Asian populations
Priya Moorjani 1,2 , Nick Patterson 2 , Periasamy Govindaraj 3 , Danish Saleheen 4 , John Danesh 4 , Lalji Singh* 3,5 ,  Kumarasamy Thangaraj* 3 , David Reich* 1,2 1 Harvard University, Boston, Massachusetts, USA,  2 Broad Institute, Cambridge, Massachusetts, USA,  3 Centre for  Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India,  4 Dept of Public Health and Care, University of  Cambridge, Cambridge, UK,  5 Genome Foundation, Hyderabad, Andhra Pradesh, India Linguistic and genetic studies have demonstrated that almost all groups in South Asia today descend from a mixture of  two highly divergent populations: Ancestral North Indians (ANI) related to Central Asians, Middle Easterners and  Europeans, and Ancestral South Indians (ASI) not related to any populations outside the Indian subcontinent. ANI and  ASI have been estimated to have diverged from a common ancestor as much as 60,000 years ago, but the date of the  ANI-ASI mixture is unknown. Here we analyze data from about 60 South Asian groups to estimate that major ANI-ASI  mixture occurred 1,200-4,000 years ago. Some mixture may also be older—beyond the time we can query using  admixture linkage disequilibrium—since it is universal throughout the subcontinent: present in every group speaking  Indo-European or Dravidian languages, in all caste levels, and in primitive tribes. After the ANI-ASI mixture that  occurred within the last four thousand years, a cultural shift led to widespread endogamy, decreasing the rate of  additional mixture.   
Long IBD in Europeans and recent population history 
Peter Ralph, Graham Coop  UC Davis, Davis, CA, USA  
Numbers of common ancestors shared at various points in time across populations  can tell us about recent demography, migration, and population movements.  These rates of shared ancestry over tens of generations can be inferred from  genomic data, thereby dramatically increasing our ability to infer population  history much more recent than was previously possible with population genetic  techniques.  We have analyzed patterns of IBD in a dataset of thousands of  Europeans from across the continent, which provide a window into recent  European geographic structure and migration.   
Gene flow between human populations during the exodus from Africa, and the timeline of recent human  evolution  
Aylwyn Scally, Richard Durbin  Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK 
We present a novel test for historical gene flow between populations using unphased genotypes in present-day  individuals, based on the sharing of derived alleles and making a minimal set of assumptions about their demographic  history. We apply this test to data for three human individuals of African, European and Asian ancestry. We find that the  joint distribution of European and Asian genotypes is compatible with these populations having separated cleanly at  some time in the past without subsequent genetic exchange. However the same is not true of the European-African and  Asian-African distributions, which instead suggest an extended period of continued exchange between African and nonAfrican populations after their initial separation. 
We discuss this in comparison with recent models and estimates of separation time between these populations. We  also consider the impact of recent direct experimental studies of the human mutation rate, which suggest rates of  around 0.5 × 10 -9  bp -1  y -1 , substantially lower than prior estimates of 1 × 10 -9  bp -1  y -1  obtained from calibration against  the primate fossil record. We show that in several places the lower rate, implying older dates, yields better agreement  between genetic and non-genetic (paleoanthropological and archaeological) evidence for events surrounding the  exodus of modern humans from Africa and their dispersion worldwide.
Long-term presence versus recent admixture: Bayesian and approximate-Bayesian analyses of genetic  diversity of human populations in Central Asia 
Friso Palstra, Evelyne Heyer, Frederic Austerlitz  Eco-anthropologie et Ethnobiologie UMR 7206 CNRS, Equipe Genetique des Populations Humaines, Museum National  d'Histoire Naturelle, Paris, France 
A long-standing goal in population genetics is to unravel the relative importance of evolutionary forces that shape  genetic diversity. Here we focus on human populations in Central Asia, a region that has long been known to contain  the highest genetic diversity on the Eurasian continent. However, whether this variation principally reflects long-term  presence, or rather the result of admixture associated with repeated migrations into this region in more recent historical  times, remains unclear. Here we investigate the underlying demographic history of Central Asian populations in explicit  relation to Western Europe, Eastern Asia and the Middle East. For this purpose we employ both full Bayesian and  approximate-Bayesian analyses of nuclear genetic diversity in 20 unlinked non-coding resequenced DNA regions,  known to be at least 200 kb apart from any known gene, mRNA or spliced EST (total length of 24 kb), and 22 unlinked  microsatellite loci.   
Using an approximate Bayesian framework, we find that present patterns of genetic diversity in Central Asia may be  best explained by a demographic history which combines long-term presence of some ethnic groups (Indo-Iranians)  with a more recent admixed origin of other groups (Turco-Mongols). Interestingly, the results also provide indications  that this region might have genetically influenced Western European populations, rather than vice versa. A further  evaluation in MCMC-based Bayesian analyses of isolation-with-migration models confirms the different times of  establishment of ethnic groups, and suggests gene flow into Central Asia from the east. The results from the  approximate Bayesian and full Bayesian analyses are thus largely congruent. In conclusion, these analyses illustrate  the power of Bayesian inference on genetic data and suggest that the high genetic diversity in Central Asia reflects both  long-term presence and admixture in more recent historical times. 
Population structure and evidence of selection in the Khoe-San and Coloured populations from southern Africa 
Carina Schlebusch 1 , Pontus Skoglund 1 , Per Sjödin 1 , Lucie Gattepaille 1 , Sen Li 1 , Flora Jay 2 , Dena Hernandez 3 , Andrew  Singleton 3 , Michael Blum 2 , Himla Soodyall 4,5 , Mattias Jakobsson 1 1 Uppsala University, Uppsala, Sweden,  2 Université Joseph Fourier, Grenoble, France,  3 National Institute on Aging (NIH),  Bethesda, USA,  4 University of the Witwatersrand, Johannesburg, South Africa,  5 National Health Laboratory Service,  Johannesburg, South Africa  

The San and Khoe people currently represent remnant groups of a much larger and widely distributed population of  hunter-gatherers and pastoralists who had exclusive occupation of southern Africa before the arrival of Bantu-speaking  groups in the past 1,200 years and sea-borne immigrants within the last 350 years. Mitochondrial DNA, Y-chromosome  and autosomal studies conducted on a few San groups revealed that they harbour some of the most divergent lineages  found in living peoples throughout the world.   

We used autosomal data to characterize patterns of genetic variation among southern African individuals in order to  understand human evolutionary history, in particular the demographic history of Africa. To this end, we successfully  genotyped ~ 2.3 million genome wide SNP markers in 220 individuals, comprising seven Khoe-San, two Coloured and  two Bantu-speaking groups from southern Africa. After quality filtering, the data were combined with publicly available  SNP data from other African populations to investigate stratification and demography of African populations.  

We also  applied a newly developed method of estimating population topology and divergence times. Genotypes and inferred  haplotypes were used to assess genetic diversity, patterns of haplotype variation and linkage disequilibrium in different  populations.  We found that six of the seven Khoe-San populations form a common population lineage basal to all other modern  human populations. The studied Khoe-San populations are genetically distinct, with diverse histories of gene flow with  surrounding populations. A clear geographic structuring among Khoe-San groups was observed, the northern and  southern Khoe-San groups were most distinct from each other with the central Khoe-San group being intermediate. The  Khwe group contained variation that distinguished it from other Khoe-San groups. Population divergence within the  Khoe-San group is approximately 1/3 as ancient as the divergence of the Khoe-San as a whole to other human  populations (on the same order as the time of divergence between West Africans and Eurasians). Genetic diversity in  some, but not all, Khoe-San populations is among the highest worldwide, but it is influenced by recent admixture. We  furthermore find evidence of a Nilo-Saharan ancestral component in certain Khoe-San groups, possibly related to the  introduction of pastoralism to southern Africa.   

We searched for signatures of selection in the different population groups by scanning for differentiated genome-regions  between populations and scanning for extended runs of haplotype homozygosity within populations. By means of the  selection scans, we found evidence for diverse adaptations in groups with different demographic histories and modes of  subsistence. 
Impacts of life-style on human evolutionary history: A genome-wide comparison of herder and farmer  populations in Central Asia 
Michael C. Fontaine 1,2 , Laure Segurel 2,3 , Christine Lonjou 4 , Tatiana Hegay 5 , Almaz Aldashev 6 , Evelyne Heyer 2 , Frederic  Austerlitz 1,2 1 Ecology, Systematics & Evolution. UMR8079 Univ. Paris Sud - CNRS - AgroParisTech, Orsay, France,  2 EcoAnthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France, 3 Department of Human Genetics, University of Chicago, Chicago, USA,  4 C2BiG (Centre de  Bioinformatique/Biostatistique Genomique d’Ile de France), Plateforme Post-genomique P3S, Hopital Pitie Salpetriere,  Paris, France,  5 Uzbek Academy of Sciences, Institute of Immunology, Tashkent, Uzbekistan,  6 Institute of Molecular  Biology and Medicine, National Center of Cardiology and Internal Medicine, Bishkek,  

Kyrgyzstan Human populations use a variety of subsistence strategies to exploit an exceptionally broad range of habitats and  dietary components. These aspects of human environments have changed dramatically during human evolution, giving  rise to new selective pressures. Here we focused on two populations in Central Asia with long-term contrasted lifestyles:  Kyrgyz’s that are traditionally nomadic herders, with a traditional diet based on meat and milk products, and Tajiks that  are traditionally agriculturalists, with a traditional diet based mostly on cereals. We genotyped 93 individuals for more  than 600,000 SNP markers (Human-660W-Quad-V1.0 from Illumina) spread across the genome. We first analysed the  population structure of these two populations in the world-wide context by combining our results with other available  genome-wide data. Principal component and Bayesian clustering analyses revealed that Tajiks and Kirgiz’s are both  admixed populations which differed however from each other with respect to their ancestry proportions: Tajiks display a  much larger proportion of common ancestry with European populations while Kirgiz’s share a larger common ancestry  with Asiatic populations. We then examined the region of the genome displaying unusual population differentiation  between these two populations to detect natural selection and checked whether they were specific to Central Asia or  not. We complemented these analyses with haplotype-based analyses of selection. 
Bayesian inference of the demographic history of Niger-Congo speaking populations 
Isabel Alves 1,2 , Lounès Chikhi 2,3 , Laurent Excoffier 1,4 1 CMPG, Institute of Ecology and Evolution, Berne, Switzerland,  2 Population and Conservation Genetics Group, Instituto  Gulbenkian de Ciência, Oeiras, Portugal,  3 CNRS, Université Paul Sabatier, ENFA, Toulouse, France,  4 Swiss Institute of  Bioinformatics, Lausanne, Switzerland  
The Niger-Congo phylum encompasses more than 1500 languages spread over sub-Saharan Africa. This current wide  range is mostly due to the spread of Bantu-speaking people across sub-equatorial regions in the last 4000-5000 years.  Although several genetic studies have focused on the evolutionary history of Bantu-speaking groups, much less effort  has been put into the relationship between Bantu and non-Bantu Niger-Congo groups. Additionally, archaeological and  linguistic evidence suggest that the spread of these populations occurred in distinct directions from the core region  located in what is now the border between Nigeria and Cameroon towards West and South Africa, respectively. We  have performed coalescent simulations within an approximate Bayesian computation (ABC) framework in order to  statistically evaluate the relative probability of alternative models of the spread of Niger-Congo speakers and to infer  demographic parameters underlying these important migration events. We have analysed 61 high-quality microsatellite  markers, genotyped in 130 individuals from three Bantu and three non Bantu-speaking populations, representing a  "Southern wave" or the Bantu expansion, and a "Western wave", respectively. Preliminary results suggest that models  inspired by a spatial spread of the populations are better supported than classical isolation with migration (IM) models.  We also find that Niger-Congo populations currently maintain high levels of gene flow with their neighbours, and that  they expanded from a single source between 200 and 600 generations, even though available genetic data do not  provide enough information to accurately infer these demographic parameters.

A genetic study of skin pigmentation variation in India  
Mircea Iliescu1 , Chandana Basu Mallick 2,3 , Niraj Rai 4 , Anshuman Mishra 4 , Gyaneshwer Chaubey 2 , Rakesh Tamang 4 ,  Märt Möls 3 , Rie Goto 1 , Georgi Hudjashov 2,3 , Srilakshmi Raj 1 , Ramasamy Pitchappan 5 , CG Nicholas Mascie-Taylor 1 , Lalji  Singh 4,6 , Marta Mirazon-Lahr 7 , Mait Metspalu 2,3 , Kumarasamy Thangaraj 4 , Toomas Kivisild 1,3 1 Division of Biological Anthropology, University of Cambridge, Cambridge, UK,  2 Evolutionary Biology Group, Estonian  Biocentre, Tartu, Estonia,  3 Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,  4 Centre for Cellular  and Molecular Biology, Hyderabad, India,  5 Chettinad Academy of Research and Education, Chettinad Health City,  Chennai, India,  6 Banaras Hindu University, Varanasi, India,  7 Leverhulme Centre for Human Evolutionary Studies,  Division of Biological Anthropology, University of Cambridge, Cambridge, UK  

Human skin colour is a polygenic trait that is primarily determined by the amount and type of melanin produced in the  skin. The pigmentation variation between human populations across the world is highly correlated with geographic  latitude and the amount of UV radiation. Association studies together with research involving different model organisms  and coat colour variation have largely contributed to the identification of more than 378 pigmentation candidate genes.  These include TYR OCA2, that are known to cause albinism, MC1R responsible for the red hair phenotype, and genes  such as MATP, SLC24A5 and ASIP that are involved in normal pigmentation variation. In particular, SLC24A5 has been  shown to explain one third of the pigmentation difference between Europeans and Africans. However, the same gene  cannot explain the lighter East Asian phenotype; therefore, light pigmentation could be the result of convergent  evolution. A study on UK residents of Pakistani, Indian and Bangladeshi descent found significant association of  SLC24A5, SLC45A2 and TYR genes with skin colour. While these genes may explain a significant proportion of  interethnic differences in skin colour, it is not clear how much variation such genes explain within Indian populations  who are known for their high level of diversity of pigmentation. We have tested 15 candidate SNPs for association with  melanin index in a large sample of 1300 individuals, from three related castes native to South India. Using logistic  regression model we found that SLC24A5 functional SNP, rs1426654, is strongly associated with pigmentation in our  sample and explains alone more than half of the skin colour difference between the light and the dark group of  individuals. Conversely, the other tested SNPs fail to show any significance; this strongly argues in favour of one gene  having a major effect on skin pigmentation within ethnic groups of South India, with other genes having small additional  effects on this trait. We genotyped the SLC24A5 variant in over 40 populations across India and found that latitudinal  differences alone cannot explain its frequency patterns in the subcontinent. Key questions arising from this research are  when and where did the light skin variant enter South Asia and the manner and reason for it spreading across the Indian  sub-continent. Hence, a comprehensive view of skin colour evolution requires that in depth sequence information be  corroborated with population (genetic) history and with ancient DNA data of past populations of Eurasia



May 24, 2011

Michael Frachetti on the Inner Asian Mountain Corridor

Here is another video of Michael Frachetti's talk in the Secrets of the Silk Road symposium:


The abstract of the talk:

Abstract - Seeds for the Soul: East/West Diffusion of Domesticated Grains along the Inner Asian Mountain Corridor.
Inner Asia has commonly been conceived as a region of Nomadic societies surrounded by agricultural civilizations throughout Antiquity. Societies of China, SW Asia, and Eastern Europe each developed agriculture in the Neolithic, while the earliest evidence for agriculture from the Eurasian steppe shows it was not a major part of local economies until the Iron Age (c. 700 BC). Newly discovered botanical evidence of ancient domesticated wheat and millet at the site of Begash in Kazakhstan, however, show that mobile pastoralists of the steppe had access to domesticated grains already by 2300 BC and that they were likely essential to the diffusion of wheat into China, as well as millet into SW Asia and Europe in the mid-3rd millennium BC. Currently, Begash provides the only directly dated botanical evidence of these crisscrossed channels of interaction. Whatsmore, the seeds from Begash were found in a ritual cremation context rather than domestic hearths. This fact may suggest that the earliest transmission of domesticated grains between China and SW Asia was sparked by ideological, rather than economic forces. This paper describes the earliest known evidence of wheat in the Eurasian steppes and explores the extent of ritual use of domesticated grains from China to SW Asia, across the Inner Asian mountains.

All in all a very enlightening talk that suggests that the mountain corridor south of the Caspian Sea, lands that would later be part of the Silk Road was the main conduit for cultural exchange between east and west, with Begash having the earliest presence of wheat in the steppe in a ritual context (more below).

His passing remark about the absence of grains east of the Don and all the way to Mongolia is interesting in terms of some of my recent comments.

Frachetti points out how misguided it is to view the Eurasian steppe as a uniform culture area, pointing out that the horse and cattle were more important in the European steppe, whereas goats were much more important in the Asian steppe with a full-blown pastoralist economy that did not depend on horses.

He thinks that domesticated wheat and millet moved in opposite directions (from West Asia and China) and arrived in Central Asia, a land formerly devoid of the cereals that were used in the great civilizations of the Aegean, Near East, South Asia, and China.

His inference that the wheat at Begash and Xiaohe had a ritual funerary use seems very well-argued, although over time wheat acquired an alimentary role as well. They basically find no grains anywhere on the site except at a cremation burial from an early period where wheat was deposited; the existence of a cremation burial is in itself interesting.

During the Q&A an attendee expresses incredulity that wheat would be used in such a context, but really I see no problem with it, as the offering of wheat in that context has a long history, and is, indeed, widely practiced even today.

At Begash we seem to be witnessing the beginnings of the spread of ideology to a steppe population. These steppe pastoralists seem to be adopting the use of wheat as a symbol of life, or "food for the dead", and the fact that they probably traded for this commodity suggests its symbolic importance to them.

May 17, 2011

The Neolithic founder crops

This is truly invaluable as a resource for the origins of the eight founder crops of the West Eurasian Neolithic. It is also open access, so read or persue the maps at your own pleasure.

Related:


Current Anthropology http://www.jstor.org/stable/10.1086/658367

The Neolithic Southwest Asian Founder Crops
Their Biology and Archaeobotany


Ehud Weiss and Daniel Zohary

This article reviews the available information on the founder grain crops (einkorn wheat, emmer wheat, barley, lentil, pea, chickpea, and flax) that started agriculture in Southwest Asia during the Pre-Pottery Neolithic period, some 11,000–10,000 years ago. It provides a critical assessment for recognizing domestication traits by focusing on two fields of study: biology and archaeobotany. The data in these fields have increased considerably during the past decade, and new research techniques have added much to our knowledge of progenitor plants and their domesticated derivatives. This article presents the current and accumulated knowledge regarding each plant and illustrates the new picture that emerged on the origin of agriculture.

Link

April 29, 2010

A cautionary tale for wheat domestication

What this paper shows is that an ancestral allele believed to have been lost during wheat domestication, was actually present in 19th century wheat cultivars. What this means is that (a) the derived allele may not be fixed (100% frequency) but may co-exist with the ancestral one, and (b) if it is indeed fixed, then this fixation did not occur in Neolithic times, but over the last century and a half or so.

Journal of Archaeological Science doi:10.1016/j.jas.2010.04.003

Re-evaluating the history of the wheat domestication gene NAM-B1 using historical plant material


Linnéa Asplund et al.

Abstract

The development of agriculture is closely associated with the domestication of wheat, one of the earliest crop species. During domestication key genes underlying traits important to Neolithic agriculture were targeted by selection. One gene believed to be such a domestication gene is NAM-B1, affecting both nutritional quality and yield but with opposite effects. A null mutation, first arisen in emmer wheat, decreases the nutritional quality but delays maturity and increases grain size; previously the ancestral allele was believed lost during the domestication of durum and bread wheat by indirect selection for larger grain. By genotyping 63 historical seed samples originating from the 1862 International Exhibition in London, we found that the ancestral allele was present in two spelt wheat and two bread wheat cultivars widely cultivated at the time. This suggests that fixation of the mutated allele of NAM-B1 in bread wheat, if at all, occurred during modern crop improvement rather than during domestication. We also discuss the value of using archaeological and historical plant material to further the understanding of the development of agriculture.

Link

June 07, 2008

Einkorn wheat domestication in Karacadağ

From the paper:
In conclusion, Fig. 1C shows a 2-fold scenario: Einkorn domestication near the Karacadağ and T. urartu domestication along the middle Euphrates. These two domestication events would have met over time and mixed plant remains would occur at the respective sites, such as Dja’de, as the preliminary data of Willcox (2005) might imply. The crossing barrier between these two species could explain why the integrities of the species are maintained. And it also explains why an extinct (Fuller 2007) domesticated 2-grained “Einkorn” wheat (which we assume to be T. urartu) might have followed the spread of agriculture, for example into the Balkans (Kroll 1992) and Germany (Kreuz and Boenke 2002), and would have left no DNA trace in modern Einkorn. Also interesting is the human dimension: these two domestication events meet close to Göbekli Tepe, the impressive site built by hunter-gatherers on the verge of becoming farmers (Schmidt 2007a, 2007b; Curry 2008). One might also put it the other way around: domestication spread north and south from Göbekli Tepe, making the ceremonial meetings at Göbekli Tepe the “spiritual” source of these two domestications. Also, emmer wheat (T. dicoccum) has its domestication site nearby (Luo et al. 2007).

Genome. 2008 Jun;51(6):444-451.

Reassessing domestication events in the Near East: Einkorn and Triticum urartu.

Heun M, Haldorsen S, Vollan K.

To reassess domestication events in the Near East, accessions of Triticum urartu from a well-described sampling were combined with a representative sample covering the Karacadağ Einkorn wheat domestication. The observed DNA separation between the two wheat species accounts for the main differentiation, but geographic variation within T. urartu is evident and so is the domestication scenario among wild, feral, and domesticated Einkorn. In contrast to the clear DNA differences, it is difficult to separate living T. urartu from wild Einkorn based on morphology. With archaeobotanical material a distinction of carbonized remains of these two wheats is considered to be impossible. We reviewed the differences concerning morphology and maturity and combined these observations with information about archaeological sites in the Near East. In conclusion, the excavation sites in the middle Euphrates may contain T. urartu rather than Einkorn wheat and T. urartu may underlie the reported occurrence of the extinct 2-grained domesticated "Einkorn" wheat. The first Einkorn wheat domestication sensu stricto seems to have happened around the Karacadağ, as reported earlier. The human dimension shown by the excavation of Göbekli Tepe can explain why domesticated phenotypes might have spread quickly.

Link

May 29, 2008

ISBA3 abstracts

Many abstracts from the International Symposium on Biomolecular Archaeology.

Various DNA / Technology

Human ancient DNA analysis within The Genographic Project: a project update and preliminary results from two powerful multiplex SBE typing methods

Wolfgang Haak1, Juan J Sanchez2, Clio Der Sarkissian1, Christina Adler1 & Alan Cooper1

1 The Australian Centre of Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, North Terrace Campus, SA-5005 Adelaide, Australia
2 National Institute of Toxicology and Forensic Science, Canary Islands Delegation, 38320 Tenerife, Spain.

The Australian Centre of Ancient DNA (ACAD) is one of 11 Regional Centres of The Genographic Project (TGP), and the only centre dedicated solely to ancient human DNA analyses. Our aim is to provide a temporal perspective to the movements and presence of prehistoric and historic populations through ancient DNA, and establish a time depth to the detailed genetic landscape being generated from the largescale modern human population data of TGP. We will present an update on the current activities and an overview of the protocols and strategies used in the ACAD. The retrieval of authentic human ancient DNA is plagued by methodological problems, and to deal with these we are relying on state-of-the-art methods ranging from sample collection through to data generation. We are using SPEX and multiplex PCR assays followed by SBE typing to analyse both mtDNA coding region markers and nuclear NRY markers. New multiplex assays were designed to amplify highly degraded DNA with an average amplicon length of 60-80bp, targeting 22 mtDNA SNPs and 25 NRY SNPs - to match the core marker panel used within TGP. Preliminary results show that the SBE typing protocols are robust and prove to be highly efficient in targeting minute amounts of suriving aDNA. In addition, the main advantage of SBE has proven to be the detecting power of omnipresent (background) contamination. We conclude that the mtDNA and NRY SBE assays, in combination with sequence data from the mtDNA control region (backed up by cloning and SPEX), and specialised sample collecting systems, provide a powerful means to effectively generate largescale (pre-)historic population data from ancient human samples.

What colour was Attila the Hun’s horse?: genetic signatures of phenotypic traits in archaeological materials

Mim A. Bower1, Michael G. Campana2, Diane Lister1, Mark Whitten3, Kathy M. Dominy4, Angela M. Murphy5, Paula Jenkins6, Richard Sabin6, Michael Akam7, Robert Asher7 & Matthew Binns5.

1 McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK.

2 Department of Archaeology, University of Cambridge, Downing Street, Cambridge, CB2 3DZ, UK.

3 Comparative Population Linguistics Group, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.

4Department of Medical and Molecular Genetics, King's College London School of Medicine, Guy's Hospital, London, SE1 9RT, UK.

5Department of Veterinary Basic Sciences, the Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.

6 Department of Zoology, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK

7Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.

Studying the phenotype, i.e. what a plant or animal looked or behaved like, is perhaps the next “Holy Grail” in ancient DNA research. If we could trace the genes responsible for particular characters in archaeological specimens, it would open the door to some highly relevant and interesting questions in archaeology; the least of which may be the elusive “domestication gene”, but could cover more basic questions, such as: did people in mediaeval Europe prefer cows that had a tendency to lay down fat or muscle? When and where did a particular genetic disorder enter a domestic population? Was the spread of agriculture influenced by adverse environmental conditions? Or what colour was Attila the Hun’s horse? We could begin to understand past approaches to animal and plant husbandry, the expression of past human choice and selection, and past understanding of biological processes such as heredity. Fortunately, molecular biology is fast uncovering the genes responsible for particular phenotypic traits – the only problem, and a significant one perhaps, is looking for these genetic signatures in ancient DNA, known to be a recalcitrant material for analysis.

Here we present the results of our research on phenotypic loci in various historic and archaeological materials (bones, teeth, parchment, hide, seeds), and discuss the potential for future of phenotypic research in archaeogenetics.

Greece & Italy

Aristophanes and Stable Isotopes: Comparing literary and isotopic evidence of diet in Classical Thebes, Greece.

Efrossini Vika 1,2, Mike Richards3,4, Holger Schutkowski2 and Vassilis Aravantinos5

1 School of Conservation Sciences, Bournemouth University, BH12 5BB, UK

2 Division of Archaeological, Geographical and Environmental Sciences, University of Bradford, BD7 1DP, UK

3 Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, DE

4 Department of Archaeology, Durham University, DH1 3LE, UK

5 IX Ephorate of Prehistoric and Classical Antiquities, Thebes 60200, GR

The greatest advantage for an archaeologist working with historically dated material is the existence of literary sources, which can complement scientific analyses in archaeology. The present study compiles a dietary profile for the inhabitants of Classical Thebes, using δ13C and δ15N isotope analysis, comparing this evidence with information on diet as presented in Aristophanes’ comedies (Acharnians, Plutus, Wasps).

Aristophanes’ work is abundant in satirical scenes, which emphasize personal attributes and local characteristics. Within this realm, it is possible to extract information on dietary habits, trade and economy in the Classical times. Merchants from Thebes oftentimes appear in his work, reflecting the city’s wealth. Among the goods deriving from this region, eels feature prominently, and are praised as an exceptional delicacy.

Stable isotope analyses of bone collagen were carried out for individuals from the Classical burials of the Northeastern cemetery of Thebes. Results show a remarkable increase of the nitrogen values relative to the previous periods, which is not accompanied by an analogous enrichment of the carbon values. This profile can partly be explained by an increased consumption of freshwater sources in Thebes during the Classical times, such as Aristophanes’ famous eels.

The results demonstrate how the integration of isotopic and literary evidence can provide novel information about Classical society in Thebes.

Greek myths

Terry Brown
Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, M1 7DN, UK

The Greek Bronze Age is the time of the Homeric legends and the Greek myths. The work of Schliemann, Tsountas, Wace and others revealed the material remains of the Mycenaean civilisation that was dominant in the Aegean during the 17th to 12th centuries BC, these remains including human skeletons, some buried with rich grave goods. Biomolecular archaeologists have been attracted to the Greek Bronze Age because there are interesting kinship questions for the burials at several sites, and because aDNA could throw light on the impact of diseases such as malaria on these societies. Addressing these questions clearly requires that aDNA is preserved in the relevant material, and our conclusion after ten years of work is that largely it is not. We have found no indication of aDNA at Lerna, Antron Grave Circles A and B and Mycenae Grave Circle A. At Mycenae Grave Circle B, we detected mitochondrial aDNA in just four of the 22 skeletons that we studied. Only at Kouphovouno have we have obtained sufficient aDNA results to attempt any kind of archaeologically relevant study. The distinguishing feature of Kouphovouno is that we obtained skeletal samples immediately after their excavation. We used optimised PCR systems in order to maximise our chances of detecting aDNA if it was present, but we also used a high containment facility and took scrupulous care to remove surface contamination from the bone samples and to prevent cross-contamination with PCR products from previous experiments. We also confirmed that our negative results were not due to inhibition of PCRs by substances co-purifying with aDNA. Negative results tend not to get widely publicised – we would have preferred positive ones but not if they lead to new Greek myths.

Late Bronze Age Diet in the Greek Peloponnese


E.I.Petroutsa1 & M.P.Richards2

1.20 Koundouriotou str., Exarcheia, 10683 Athens, Greece

2.Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany


In this paper we present the results of an isotopic study of bone collagen samples from four Late Bronze Age cemeteries from the Northern Peloponnese in Greece: Voudeni, Aghia Triada, Almyri and Kritika. Through isotope analyses we sought to characterise the general diets in these four sites, especially the amounts of marine protein, as well as animal vs. plant proteins in diets. We also compared the isotopic results from these sites with other Bronze Age sites, including Mycenae. Despite the coastal location of most of the sites we could not find evidence of any significant consumption of marine foods. Instead, most human diets are based on a mixture of plant and animal protein, from C3 terrestrial resources.

Preliminary results of C and N isotope analyses and 14C dating of prehistoric humans and animals from the Mesolithic-Neolithic site of Grotta dell’Uzzo, Sicily, Italy

Marcello A. Mannino1, Sahra Talamo1, Rosaria Di Salvo2, Vittoria Schimmenti2, Marcello Piperno3, Sebastiano Tusa4, Antonio Tagliacozzo5, Michael P. Richards1,6

(1) Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig (Germany)

(2) Museo Archeologico Regionale ‘Antonino Salinas’, Via Bara all’Olivella 24, 90133 Palermo (Italy)

(3) Dipartimento di Scienze Storiche, Archeologiche ed Antropologiche dell’Antichità, Sezione di Paletnologia, Università di Roma ‘La Sapienza’, Via Palestro 63, 00185 Roma (Italy)

(4) Soprintendenza del Mare, Palazzetto Mirto, Via Lungarini 9, 90133 Palermo (Italy)

(5) Museo Nazionale Preistorico Etnografico ‘L. Pigorini’, Piazzale Guglielmo Marconi 14, 00144 Roma E.U.R. (Italy)

(6) Department of Archaeology, University of Durham, South Road, DH1 3LE Durham (United Kingdom)

Grotta dell’Uzzo is one of the key sites in the Mediterranean for the study of the changes in subsistence that took place in the transition from hunter-gatherer (Mesolithic) to agro-pastoral (Neolithic) economies. The cave is also important because 13 Mesolithic humans have been unearthed from 11 burials excavated within it. In order to study the diets of these humans, C and N isotope analyses were undertaken on skeletal remains recovered in the burials and from different trenches excavated at the cave. The preliminary results of these analyses suggest that the main sources of dietary protein were terrestrial and probably originated from the consumption of mammalian herbivores such as red deer (the most commonly exploited animal for much of the cave’s occupation). The contribution of marine resources to human diet at Grotta dell’Uzzo was probably not very significant in absolute terms. This finding might appear to be in contrast with the results of the archaeozoological studies, which have demonstrated that there was an intensification in shellfish collecting and in fishing from the end of the Mesolithic to the inception of the Neolithic. However, given that on the basis of the chronological data currently available the burials predate the end of the Mesolithic, the results of the isotope analyses are in line with the findings of the archaeozoological studies and of the seasonality studies, which have shown that marine resources (mainly represented by shellfish) were not exploited throughout the year before the final stages of the Mesolithic.

Plants

Phylogeographic analysis of barley (Hordeum vulgare) landraces shows that the distribution of lineages retains an imprint from the initial patterns of agricultural spread through Europe.

Huw Jones1, James Cockram1, Lydia M Smith1, Ian MacKay1, Robin G Allaby2, Terrence A Brown3, Wayne Powell1

1 National Institute of Agricultural Botany, Huntingdon Road, Cambridge, CB3 0LE

2 Warwick HRI , Wellesbourne, Warwick , CV35 9EF

3 Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester, M1 7DN

In the 8000 years since barley was first introduced into the continent of Europe, the evolution of this crop species has been subject to selection under biotic and abiotic pressures. European farmers will have influenced the distribution of barley ecotypes by the movements of early farmers and by their selection of preferred types. The evolution of barley in Europe will also reflect the differing environments in which it has been grown. Modern barley cultivars from across Europe can be seen to differ in their morphology and growth habits. We have attempted to dissect the origins of these different forms by examining the landraces and assess the relative importance of human and environmental selection on modern barley lineages.

We have sampled barley landraces from Europe and discovered their population structure by microsatellite genotyping and statistical analysis. We have used passport data from germplasm collections to characterise the 2-row / 6-row head morphology, hulled / naked grain morphology and the spring / winter growth habit of these sub-populations. The genetic variation underlying key adaptive traits controlling flowering time has been explored by re-sequencing the photoperiod response gene Ppd-H1 and by haplotype analysis at the spring / winter vernalisation genes Vrn-H1 and Vrn-H2. These studies were designed to run alongside analysis of ancient DNA and historic DNA from barley and emmer wheat collected from across Europe.
The population structure we have discovered divides barley landraces into a number of sub-populations each with a distinct geographic distribution. Our genetic data for key adaptive traits allows us to understand the environmental influence on the geographic distribution of each lineage. Where lineages with a similar adaptive profile have distinct geographic distributions we see the imprint of early dispersal by ancient farmers.

Stable isotope evidence for the consumption of millet in Bronze Age Italy

Mary Anne Tafuri1, Oliver Craig2 & Alessandro Canci2
1 Dipartimento di Biologia Animale e dell’Uomo, Sapienza Università di Roma, P.le A. Moro, 5, 00185 Roma. Italy – email: maryanne.tafuri@uniroma1.it

2 Department of Archaeology, University of York, BioArch Biology, S Block PO Box 373 York YO10 5YW, UK

3 Dipartimento di Storia e Tutela dei Beni Culturali, Università degli Studi di Udine, Via Palladio, 8, 33100 Udine. Italy


This study presents, via carbon and nitrogen stable isotope analysis on human and animal bone collagen, new data on diet and subsistence strategies at northern and southern Italy Early and Middle Bronze Age sites, which clearly indicate the direct or indirect consumption of C4 plants. On the basis of paleobotanic data available and as suggested by previous similar studies, we argue here that the isotopic signal obtained can be associated with the consumption of millet (P. miliaceum and Setaria italica). If such an interpretation were true, while we wait for further paleobotanical and isotopic studies, we should consider the results obtained as the earliest evidence of millet consumption in prehistoric Europe. We thus suggest a possible pattern of distribution in the Peninsula of the practice of production and consumption of millet, while setting a new agenda on food security and subsistence strategies in prehistoric Italy

Cattle & Goats


A PCR system free of contaminating DNA for the amplification of bovine DNA from bovine fossils

Camille Berthelot, Sophie Champlot, Marie Liouville, Thierry Grange, Eva-Maria Geigl

Institut Jacques Monod CNRS UMR 7592, Universités Paris 6 et 7, Tour 43, 2, Place Jussieu, 75251 Paris cedex 05, France

Palaeogenetic analyses of bovine bone remains from many Neolithic sites in Europe and in Southwest Asia suffer from poor DNA preservation in these bones that increases the risk of amplification of contaminating modern bovine DNA. Indeed, trace amounts of contaminating bovine DNA occur ubiquitously. In particular, they can be found at low quantities in biochemical reagents used to extract and amplify DNA. These contaminating molecules mimic ancient DNA molecules. Indeed, the contamination rate often resembles the success rate of ancient DNA studies from bovine remains and the length of the contaminating DNA fragments is often comparable to ancient DNA fragments. We elaborated a decontamination protocol for PCR reagents combining various treatments to reduce contamination towards zero. This system significantly increases the reliability of ancient DNA results from bone remains of domesticated animals.


Detecting selection in ancient cattle remains: Pre industrial selection in Bos Taurus and SNP typing in medieval cattle remains

Emma Svensson1, Anders Götherström1

1 Evolutionary Biology, Evolution Genomics & Systematics, Uppsala University, 752 36 Uppsala, Sweden

Historic and prehistoric animal breeding is an enigmatic topic, complicated to approach with conventional genetics and osteology. Questions like when it started, and how strict it was, are of general interest, but it is also complicated to generate a suitable dataset for such questions. By tracing changes in genetic diversity with serial data we can find out how cattle has changed since the domestication of the aurochs to become the array of breeds seen today. Cattle are likely to have been subjected to selection predating the 18th century but the information is scarce. Using a 12plex SNP stream system alongside pyrosequencing we typed up to eight coding and six neutral SNPs in 142 ancient and 216 modern Bos Taurus from Northern Europe. We found a significant decrease in total heterozygosity over time for the coding SNPs which are presumably associated with phenotypic traits such as milk quality and coat colour while neutral markers on the other hand don’t show any significant change over time. This suggests that the decline in diversity is caused by artificial selection and not other genetic processes. The medieval period was a dynamic time in northern European history. The society was moving toward a higher degree of specialization in general, and a number of towns based on trade arouse in Scandinavia. Our findings of early selection fit well with the more sophisticated farming and higher degree of animal breeding that likely occurred at this time.

Using new and old approaches to study bovid systematics and evolution across Eurasia

Alan Cooper1, Kefei Chen1, Beth Shapiro2

1 The Australian Centre of Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, North Terrace Campus, SA-5005 Adelaide, Australia

2 Department of Biology, The Pennsylvania State University, 326 Mueller Laboratory, University Park PA 16802, USA

Ancient DNA studies of bovid remains from Europe have detected four main taxa: Bison bonasus (the European Bison); Bison priscus (Steppe bison), Bos primigenius (Aurochs); and early Bos taurus (Daisy). Studies of bones recovered from caves in the Urals and Caucasus, and from material dredged from the North Sea, have revealed a fifth European bovid – the Caucasus bison. Previously recognised only as a sub-species of European bison, this taxon appears to represent a separate species, with more genetic diversity than Beringian populations of Bison priscus, suggesting a long evolutionary history and stable population size. It has changed ecological dominance with Bison priscus at several points in the Pleistocene, which appear to be related to climatic and environmental change.

We have been using emulsion PCR and high-throughput hybridisation-based SNP screening systems that can simultaneously analyse 50,000 bovid SNPs to explore the genomic evolution of ancient bovids during the Pleistocene and subsequent domestication. We have been concentrating on pre-domestic Bos taurus specimens, as well as representatives of the other Pleistocene bovid species. This approach holds enormous promise for fine-scale temporal analyses of evolution in response to climate and environmental change, as well as archaeology and domestication.

The process of cattle domestication during the Neolithic as revealed by a large-scale palaeogenetic study

Eva-Maria Geigl, Mélanie Pruvost, Marie Liouville, Camille Berthelot, Reinhard Schwarz, Sophie Champlot, Thierry Grange, Virginia Bessa-Correia, Hans-Peter Uerpmann, Lamys Hachem, Hitomi Hongo, Séverine Braguier

Institut Jacques Monod CNRS UMR 7592, Universités Paris 6 et 7, Tour 43, 2, Place Jussieu, 75251 Paris cedex 05, France

Several disciplines can contribute to the elucidation of the processes of animal domestication during the Neolithic, such as archaeology, archaeozoology, and, more recently, isotope and genetic studies. The processes of domestication leave genetic signatures in the genomes of the domesticated animals that can be explored via the combination of both genetic analyses of extant domesticates and palaeogenetic analyses of bone remains of the first generations of domesticated animals and of their wild ancestors. We adopted this approach to shed light on the domestication of the aurochs. We studied roughly 250 Bos bone remains from Southwest Asia, according to archaeological and archaeozoological evidence the presumed centre of cattle domestication, and from France, the region where the two Neolithic migration currents mingled. To obtain authentic palaeogenetic results, several methodological difficulties related to poor DNA preservation and reagent contamination had to be solved. We will present both the methodological challenge that we encountered and overcame and the results of our large-scale study.

Cattle domestication and the troublesome aurochs

Cecilia Anderung1, Jurgita Baubliene2, Daniel Makowiecki3, José Miguel Carratero4, Linas Daugnora2, Juan Luis Arsuaga5 and Anders Götherström6

1Palaeontology Department, Natural History Museum, Cromwell road, London SW7 5BD, Great Britain.
2Department of Anatomy and Histology, Lithuanian Veterinary Academy, Tilžes str. 18, LT-3022, Kaunas, Lithuania
3Institute of Archaeology, Nicolaus Copernicus University, Podmurna 9/11 87-100 Toruń, Poland
4Laboratorio de Evolución Humana, Departamento Ciencias Históricas y Geografía Edificio I+D+I Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain
5Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos c/ Sinesio Delgado Nº 4 Pabellón 14, 28029 Madrid, Spain
6Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden

A number of genetic studies relating to the origin of modern cattle have been published recently. In particular the extinct European aurochs (Bos primigenius), progenitor of the modern domesticated form, has attracted a lot of attention. European aurochs bones that have yielded mitochondrial DNA are genetically clearly different from modern cattle. This genetic data, in combination with the genetic patterns observed in modern cattle, has led to the suggestion that modern cattle have a single origin in the Near East, and that the European aurochs population had little to do with their domestication.

However, we ask the question: could this picture of European cattle domestication be too simple?

Here we present results from an investigation of published and novel aurochs sequences from Lithuania, Spain, Poland, and Britain, giving special attention to the Spanish sequences. We looked at the mitochondrial DNA variation in Iberian aurochs remains and searched for aurochs sequences in a domestic context. We find that cattle and aurochs mitochondrial sequences from Iberia deviate from the pattern observed in sequences from Central and Eastern Europe.

In the light of this data, we discuss the possibility of local aurochs domestication events in Europe.

High mtDNA diversity among cattle and goats from the earliest Neolithic settlements on the European continent


Amelie Scheu1,2, Norbert Benecke2 and Joachim Burger1
1 AG Palaeogenetik, Institut für Anthropologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany

2 Deutsches Archäologisches Institut, Eurasienabteilung, 14195 Berlin, Germany

The process of domestication includes a decline in genetic variability. Additional homogenisation occurs due to subsequent colonisation events, such as the Neolithisation of Europe. Our previous studies have shown genetic uniformity even among early Neolithic European cattle (Bollongino et al. 2006). But modern goats also share more than 90% of the same mtDNA haplogroup.

To find out exactly when and where this genetic bottleneck arose during the Neolithisation of Central Europe, we investigated remains of early domesticates on the border between Asia and Europe, i.e. at the origin of the trans-Danubian route of Neolithisation. That region, particularly the area around the Bosphorus and the transit country of Bulgaria, plays a crucial role.

We found higher mtDNA diversity among Neolithic and Bronze Age domesticated cattle East and West of the Black Sea (haplogroups T, T2 and T3) than in Central European populations. Among goats, we found the two different mtDNA haplogroups A and G. G had previously been found among modern goats only near the Fertile Crescent (Naderi et al. 2007).

Our results argue for large and genetically more diverse herds imported to this area and/or for intense trade. Furthermore, they indicate that a second wave of expansion in the direction of Central Europe is responsible for the final loss of mtDNA diversity.

Ice man Schnidi’s trousers: insight into prehistoric goat diversity

Angela Schlumbaum1, Serge Volken 2, Marquita Volken 3, Jörg Schibler4, Peter Suter 5 Kathrin Glauser6 & Albert Hafner 7

1 Institute of Prehistory and Archaeological Science, University of Basel, Spalenring 145, 4055 Basel, Switzerland

2 Gentle Craft, Rue du Rôtillion, 10, 1001 Lausanne, Switzerland

3 Gentle Craft, Rue du Rôtillion, 10, 1001 Lausanne, Switzerland

4 Institute of Prehistory and Archaeological Science, University of Basel, Spalenring 145, 4055 Basel, Switzerland

5 Archaeological Service of the Canton Bern, Brünnenstrasse 66, 3001 Bern, Switzerland

6 Archaeological Service of the Canton Bern, Brünnenstrasse 66, 3001 Bern, Switzerland

7 Archaeological Service of the Canton Bern, Brünnenstrasse 66, 3001 Bern, Switzerland
Since 2003 more than 300 prehistoric remains were discovered in the vicinity of a melting ice patch of the Schnidejoch (2750 m; Bernese Alps, Switzerland), paralleling the finds accompanying the Iceman from the Tisenjoch (Oetztal Alps, Italy/Austria; “Oetzi”). One leg of a Neolithic leather trouser was found and 14C dated to 2900 – 2600 BC. The morphological identification of the animal skin was ambiguous because of the bad preservation of diagnostic features. Based on grain patterns of the skin the leather was made either from sheep or goat.

Because of the importance of the object, a genetic identification of the animal species was attempted. After DNA extraction with QiAmp DNA Mini Kit a 70bp fragment of the mitochondrial cytochrome b gene was amplified in the diluted extract. The leather was made of goat skin (Capra hircus). Six geographically broadly distributed goat lineages are recognized based on mitochondrial d-loop variation, of these lineage A and C were identified by others in prehistoric goat bones from France. The “trouser’s goat” however, belongs to lineage B, which is common in Asia, but extremely rare in Europe today.

An Ancient DNA study from The Farm Beneath the Sand

Martin Bay Hebsgaard1

1 Dept. of Biology, University of Copenhagen, Universitetsparken 15, Denmark
Applying ancient DNA techniques on samples from the archaeological site “The Farm Beneath the Sand” (GUS) near Nuuk in Southwest Greenland is the first attempt to extract DNA from these relative young but novel samples. The sample site highlight the dramatic landscape changes that resulted in floodplain aggradations that eventual buried the site fixing the site under perma-frozen conditions.
The Farm beneath the Sand is situated on a plain surrounded by low mountains ca. 80 km east of Nuuk. When the building remains were found they were overlain by ca. 1,5 m thick layers of sand and gravel, and today the plain in front of the farmhouse appears as a sandy dessert intersected by meandering watercourses that are draining off the icecap.

All together the samples yielded DNA from humans, cattle, sheep, goat and reindeer. Quantification shows approximately 16 times more DNA from cattle than from sheep. Goat DNA was undetectable using Quantitative PCR. The amount of cattle DNA declines over time while sheep DNA probably reflects background variation.
Thanks to thick layers of sand and gravel that may have protected the DNA in the anthropogenic layers ancient DNA is usable in an archaeological context in the reconstruction of the past. In this example ancient DNA research has helped to refine and define archaeological interpretations of the Norse life by adding information not seen by the naked eye. In the future ancient DNA have the capacity to be used more vigorously to investigate the diet of the Norse and show what function specific farms may have had during the settlement. As in this study the future research is not limited to animal DNA but DNA from plant and humans can be used to address different questions.

Horses

Pleistocene Horses genetics before and after the last glacial maximum

Sebastian Lippold1 and Michael Hofreiter1

1 Dept. Evolutionary Genetics, MPI for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany

We are investigating how the last glacial period affected the genetic composition of populations, particularly the horse (Equus spec.). Vast climatic changes that occurred between 30,000 and 12,000 years BP resulted in dynamic mammalian population structures. Restriction and expansion events during this period influenced both the genetic distribution and variability of a variety of mammals. We focus on western European horse populations, and try to characterize their genetic diversity and phylogeographic patterns both before and after the last glacial maximum. We sequence 600 bp of mtDNA from the mitochondrial D-Loop of different individuals obtained from different locations. Our initial results indicate tremendous genetic diversity, but no phylogeographic pattern within this marker. The genetic distribution of these ancient samples also falls within the broad diversity range apparent in recent horses. Because of this finding, we started screening the DNA samples for additional nuclear markers. Our comparison of these different markers has enabled us to reconstruct several scenarios for horse population dynamics during this period.


Investigating Eneolithic horse exploitation in northern Kazakhstan, via compound-specific stable carbon and deuterium isotope analysis of pottery.

Natalie A. Stear1, David Chivall1, Alan K. Outram2 and Richard P. Evershed1

1Organic Geochemistry Unit, School of Chemistry, University of Bristol, Clifton, BS8 1TS,
UK

2 Department of Archaeology, SoGAER, University of Exeter,Laver Building,
North Park Road, Exeter, EX4 4QE, UK


The Eneolithic site of Botai in northern Kazakhstan has been the centre of much debate regarding its role in early horse domestication (Levine, 1999; Olsen, 2003). The faunal assemblage from this remarkable site was almost entirely comprised of horse (99%); however it has remained unknown whether any of these horses were domesticated. Horse domestication is extremely difficult to detect morphologically from skeletal remains and consequently it is necessary to establish a reliable proxy for detecting ancient domestic horse populations.

Fermented mare’s milk (Kumyss) is commonly consumed in rural communities in Kazakhstan, a tradition dating back to prehistory. It is not clear if the milking of horses began (i) in the Eneolithic, during the height of the horse centred communities of the Botai culture; (ii) in the Bronze Age, in response to the milking of ruminants or, (iii) much later. If mare’s milk were identified in ancient pottery it would serve as conclusive evidence for the presence of domestic horses and enable a chronology of horse exploitation to be established.

Equine fat residues can be identified in potsherds using compound-specific stable carbon isotope analysis, but unlike ruminant fats, equine milk and adipose fats are indistinguishable from one another based on δ13C values. However, we show that it is possible to further classify equine fats as either milk or adipose, based upon the δD values of their C16:0 and C18:0 fatty acids which are determined using GC-thermal conversion-IRMS (GC-TC-IRMS). This new proxy has been applied to organic residues extracted from potsherds from Botai as part of a large scale investigation of Eneolithic and Bronze Age pottery from sites in northern Kazakhstan. Using the δ13C and δD values obtained from the Botai residues we have been able to detect equine milk residues preserved within the pottery and consequently, we provide the first direct evidence for the presence of domestic horses at Botai during the Eneolithic.


Anatolia

Detecting dairying with stable calcium isotope ratios (δ44/42Ca) of bones and teeth

Linda M. Reynard1,2, Robert E.M. Hedges1 & Gideon M. Henderson2

1 Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, United Kingdom

2 Department of Earth Sciences, University of Oxford, Parks Road, Oxford, OX1 3PR, United Kingdom

The use of dairy products in antiquity is an important part of the development of agriculture and pastoralism in Eurasia. They offer advantages of more efficient land use, improved nutrition, and more reliable and constant access to protein. Understanding the adoption of dairy, its timing, and geographical spread is relevant to developing a fuller understanding of changes in subsistence from the Neolithic.

Detecting and quantifying dairy product consumption in antiquity has, to date, relied on indirect evidence such as the age and sex structure of faunal remains and potsherd lipid residues.. To complement these methods, we have measured stable calcium isotope ratios (δ44/42Ca) of bones and teeth which allows the direct detection of dairy consumption by prehistoric humans. Dairy products have lower δ44/42Ca than other dietary calcium inputs, and this results in lower δ44/42Ca of the dairy consumer. We have measured the δ44/42Ca of human and animal bones from a range of archaeological sites by MC-ICP-MS. Results from the Mesolithic to the Neolithic at the key Near Eastern site of Abu Hureyra, Syria (11,100 –7,300 BP) show a δ44/42Ca signal attributable to dairy consumption by ancient humans, with a changing pattern through time. Work on intra- and inter-tooth δ44/42Ca variability is in progress as this material is expected to form a robust archive of in vivo isotope ratios.


Britain

An investigation into origins of individuals from a mass grave in Roman Gloucester, UK: strontium and stable isotope evidence

Carolyn Chenery1,2, Gundula Müldner1, Jane Evans2, Louise Loe3, Nicholas Márquez Grant3, Hella Eckardt1 Stephanie Leach1, Mary Lewis1

1 Department of Archaeology, University of Reading, Reading, Berkshire.

2 NERC Isotope Geoscience Laboratory, British Geological Survey, Keyworth, Nottingham.

3 Oxford Archaeological Unit Ltd, Janus House, Osney Mead, Oxford.

Contrary to popular assumptions, Britain under Rome was truly multi-cultural, with historical and epigraphic evidence recording the voluntary and forced migration of Gaulish, Germanic and North African individuals into the British provinces refs. This paper presents the results an isotopic investigation of population diversity in 1st to the 4th century Roman Gloucester; focusing on individuals found in a late 2nd century mass burial pit and comparing them to those found in single graves.

The results suggest that the majority of the individuals buried in the London Road Cemetery were from areas within the UK. However, the isotope data has identified a number of individuals whose origins lay in a region with a warmer climate than the UK. Whether these were soldiers, their followers or merchants cannot be determined.

On Rome’s Northern Frontier: Multi-isotopic investigations into cultural diversity in Roman York


Gundula Müldner1, Carolyn Chenery1,2, Stephany Leach1, Mary Lewis1 & Hella Eckardt1

1 Department of Archaeology, University of Reading, Whiteknights, PO Box 227, Reading RG6 6AB, England

2 NERC Isotope Geoscience Laboratory, British Geological Survey, Keyworth, Nottingham, NG12 5GG, England

Britain under Rome was a multi-cultural society, with historical and epigraphic evidence attesting to the presence of migrants from continental Europe, North Africa and the Middle East. Here, we combine isotope analysis for the reconstruction of diet (C,N) and mobility (Sr, O) with skeletal (craniomorphometric) and archaeological data, in order to investigate diversity in Roman York, the political, military and administrative centre of the North. The results show a heterogenous population and highlight the varied life-histories of individuals in the northernmost provincial capital of the Empire; however, they also show that skeletal and isotopic evidence are not always easily correlated. It is suggested that a diet high in marine protein was used to demonstrate a “Roman” identity.

Investigating Marine Food Consumption in Prehistoric Humans via the δ13C values of Collagen Amino Acids

Philip Dunn1, Richard P. Evershed1 & C. Joshua Pollard2
1 School of Chemistry, University of Bristol, Organic Geochemistry Unit, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, UK

2 Department of Archaeology and Anthropology, 43 Woodland Road, Clifton, Bristol BS8 1UU, UK

The current debate concerning the importance of marine foods in the diets of prehistoric peoples has stimulated interest in refining analytical approaches based on stable isotopes. An alternative to the widely bulk collagen approach is to investigate the stable carbon isotope composition of human bone collagen at the amino acid level. Our investigations of prehistoric humans from the Western Cape, South Africa, have shown that the Δ13CGlycine-Phenylalanine values for bone collagen amino acids correlate strongly with bulk δ15N values and provide a new proxy for marine food consumption. We are currently applying this new approach to human skeletal remains from northern Europe.
The tomb at Isbister lies on the south west coast of South Ronaldsay and is one of a number of Neolithic cairns found in the Orkney Islands. During excavation in 1976, the stalled main chamber and three side chambers were found to contain some 16,000 human bones and bone fragments deriving from a minimum of 341 individuals along with a wide range of faunal remains. Previous analyses of bone collagen from the human remains have shown that the tomb was in use from 4,500 to 3,800 BP and bulk collagen stable isotope values for 5 individuals lay in the range -19.9 to -21.2 ‰ indicating a predominantly terrestrial diet, which is surprising for people that lived so close to the coast.
We have now employed the recently introduced LC-IRMS technique to determine the δ13C values of bone collagen amino acids from 22 individuals from Isbister. The results will be compared to those obtained by GC/C/IRMS. The derived Δ13CGlycine-Phenylalanine values give enhanced insights into the dietary habits of the people of Isbister.

Northern Europe

Large-scale FLX-sequencing and the Swedish Neolithic

Helena Malmström1,2, Anna Linderholm3, M. Thomas P. Gilbert2, Mikael Brandström1, Jan Storå4, Petra Molnar4, Christian Bendixen5, Gunilla Holmlund6, Kerstin Lidén6, Anders Götherström1, Eske Willerslev2

1Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden

2Ancient DNA and Evolution Group, Biological Institute, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark

3Archeological Research Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

4Osteoarchaeological Research Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

5Department of Genetics and Biotechnology, Danish Institute of Agricultural Sciences Research Centre Foulum, K25 PO Box 50, DK-8830 Tjele, Denmark

6National Board of Forensic Medicine, Department of Forensic Genetics and Forensic Toxicology, Artillerigatan 12, SE-587 58 Linköping, Sweden

The relationship between the contemporary hunter-gatherer Pitted Ware Culture (PWC) and the farming Funnel Beaker Culture (TRB) in Middle Neolithic (3300-2500 B.C.) Sweden has been debated for more than a century. We approach this issue by determining the genetic signatures of skeletal remains from both complexes. Initially, we generated large amounts of “cloned” ancient mitochondrial DNA (mtDNA) PCR amplicons using a single run of the Genome Sequencher FLX System, and a recently described primer tagging protocol. Our data set consisted of Hypervariable Region I (HVRI) amplicons derived from bleach pre-treated powdered bone from Neolithic humans as well as from a large number of negative controls (animal samples, extraction and PCR blanks). We compared the ‘clone’ data with sample quality indicators, such as the number of PCR starting template molecules and the degradation ratio of DNA in the sample (number of long/short fragments). The data shows distinct patterns that differ between high and low quality extracts. After establishing the efficacy of the large scale sequencing approach, additional high-quality PWC and TRB samples (based on collagen preservation) were sequenced in a second FLX run. The compiled data yielded unambiguous HVRI sequences for approximately 40 Neolithic human samples, each compiled from cloned, duplicate PCR amplicons derived from overlapping HVRI fragments. F-statistics and AMOVA revealed significant genetic differences between the PWC and TRB samples, indicating that they indeed comprise of two distinct groups.

Allele frequencies of the lactase gene in Scandinavian Neolithic populations, hunter-gatherers vs. farmers

Anna Linderholm1, Helena Malmström2, 5, Love Dalén3, Kerstin Lidén1, Jan Storå4, Petra Molnar4, M. Thomas P. Gilbert5, Eske Willerslev5, Gunilla Holmlund6, Anders Götherström2
1Archeological Research Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

2Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden

3Marie Curie Fellow, School of Biological Sciences, University of London, United Kingdom

4Osteoarchaeological Research Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

5Ancient DNA and Evolution Group, Biological Institute, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark

6National Board of Forensic Medicine, Department of Forensic Genetics and Forensic Toxicology,Artillerigatan 12, SE-587 58 Linköping, Sweden

Genetics and culture are believed to interact, but it has been difficult to find direct evidence for the process. One example that has been put forward as a candidate is lactase persistance in adulthood, i.e. the ability to continue drinking milk. This genetic trait is believed to have evolved within a short space of time in connection with the emergence of farming cultures. Here we investigate certain Scandinavian Neolithic populations and their allele status with respect to the gene responsible for lactase persistance. We find that the allele responsible for lactase persistance was common and not significantly different from modern Swedish populations among Neolithic farmers, whereas Neolithic hunter-gatherers had a lower frequency of the allele.

aDNA analysis of human population samples from the Danish past – what have we learned?

L.C. Melchior1, N. Lynnerup2 and J.Dissing1.

1Research Laboratory, Institute of Forensic Medicine, University of Copenhagen, Denmark, 2Laboratory of Biological Anthropology, Institute of Forensic Medicine, University of Copenhagen, Denmark.

During an ongoing survey of the Danish genetic past we analyzed mtDNA from teeth from human remains from a range of burial sites from medieval times to the Stone Age. To ensure the highest possible degree of reliability generally accepted authentication criteria (including sequencing of multiple clones and replication by different researchers) as well as additional precautions (e.g. testing of laboratory performance) were observed.

Unequivocal assignment of mtDNA haplotypes was possible for more than 50 ancient subjects; however, the success rate varies substantially between sites. The highest success rate (11 out 11) was obtained with freshly excavated Viking Age subjects (ca AD 1,000), but good results were also obtained for recently excavated Iron Age sites (AD 0-400). Poor results were found with highly manipulated subjects (contamination) and with most of the Stone Age samples (4,500-5,000 YBP).

While laboratory related contamination can effectively be prevented by the abovementioned precautions, the most serious challenge to authenticity is caused by pre-lab contamination. This problem was tackled using several approaches including analysis of DNA damage patterns, haplotyping of archaeologists, phylogenetic testing and as the most efficient measure, sampling from the ancient subjects during exhumation. We show that reliable retrieval and analysis of DNA from ancient humans is indeed a possible undertaking.

A high degree of nucleotide diversity was observed in the ancient populations, and at four out of six locations the diversity was considerable higher than among modern Danes. Also, we observed a consistently higher abundance of Hg I (10-20%) than among modern Danes (~3%).The effect of the Black Death has been suggested as a possible explanation for a similar decline in the English genetic diversity. Interestingly, we found the highest genetic diversity in a 15th century population sample long after the major outbreak in the14th century.

NspI typed transition within PRNP gene (A385G / Met129Val) confirms rapid shift in allele frequencies during The Second Millennium

Henryk W. Witas1, Magdalena Kołodziejczak1, Paweł P. Liberski2
1 Dept. of Molecular Biology, Medical University of Lodz, 91-738 Lodz, Sporna 36/50, Poland

2 Dept. of Molecular Pathology and Neuropathology, Medical University of Lodz, 92-216 Łódź, Pomorska 251, Poland

Although precise biological role of prion proteins (PrPC) is still a subject of extensive study and debate, a few suggestions of their involvement in cellular processes have been described, including involvement in biology of synapse, short-term memory formation and long-term memory consolidation. Prion proteins became commonly recognizable as a cause of some human transmissible spongiform encephalopathies (TSE). Among a number of SNPs, A385G / Met129Val is assumed as a factor involved in the pathogenesis of TSEs (e.g. kuru) and a marker of memory efficiency as well. Although frequency of Met129Val alleles are precisely characterised for modern populations and its significance discussed, no data for historic and prehistoric populations to compare are available.

Specimens came from seven medieval cemeteries located throughout today’s Poland, and have been excavated recently. Teeth stored at low temperature underwent procedures generally accepted for aDNA isolation, performed automatically (MagNa Pure, Roche) at least two times on different teeth of each individual. Only the samples represented by collagen quantity above 2% dry weight, negative result of appropriate mock controls throughout isolation and amplification procedures, with successfully cloned (Amersham) and sequenced (AB 310) PCR products have been considered as authentic ancient templates. Moreover, we have applied NspI restriction analysis as a method for recognition and retrieval of undamaged ancient sequences.

The results show rapid increase in PRNP allele A frequency (Met 129) since the beginning of the Second Millennium (0.51 v. 0.65), accompanied by slight drop in heterozygotes (0.49 v. 0.39) and significant rise in Met homozygotes (0.27 v. 0.45).

As compared to present Polish as well as present European PRNP alleles frequency, medieval specimens provided the data which suggest altered mode of PRNP alleles transmission within last 35-40 generations. Although the nature of mechanism leading to observed changes is unclear, the impact of demographic factors is probably the most pronounced one affecting the process of local fluctuations of Met allele spreading out. However, the effect of selection processes should also be considered. This work is being supported by grant from Ministry of Science and Higher Education

Mice and Vikings

Eleanor Jones1
1 Department of Biology, University of York, Heslington, YO10 5DD, United Kingdom
Originally native to the northern Indian subcontinent and the Middle East, house mice (Mus musculus) have spread to their current near global distribution by exploiting a commensal niche with humans, originally in agrarian settlements. Mice also owe their current distribution pattern to human movements: they have reached the areas they now inhabit by being accidentally transported with grain and livestock foods. This close association between mice and humans means we can use information from the current genetic distribution of house mice to make inferences about past human colonisations and cultural linkages. In this study, we used mitochondrial DNA sequences from modern house mice in Great Britain, France, Ireland, Iceland, the Faeroe Islands and Norway to identify patterns in the their distribution, and tie these in to historic human migrations. The mice appear to be telling us about Norse Viking colonisations, and add a useful source of information to complement archaeological and historical data.

East Asia & Pacific

Genetic relationship of Human Skeletal Remains from an archaeological cemetery


Sang Hyun Jee 1, Yun Ji Kim 1, Yong Jae Chung1 & Min Seok Seo 1

1 Conservation Science Division, National Research Institute of Cultural Heritage, 472 Munji-dong, Yuseong-gu, Daejeon, 305-380, South Korea

We carried out genetic analyses of human skeletal remains from cemetery of a historic site, Myeong-arm-ri of Asan in South Korea. According to archaeological evidences, this site had been constructed from the Neolithic Age to the Joseon Dynasty. Twenty one human skeletons excavated from thirty pit tombs that have outer coffin build up into plaster dated to the Joseon Dynasty (14-19th century). To identify the genealogy and traditional burial pattern were assessed using mitochondrial DNA (mtDNA) and Y chromosomal STRs. We take cautious to avoid erroneous recombination by the segmental and modern contaminations were derived from researchers and all experimental stages. We sequenced the segmental amplicons of the hyper variable regions (HVRs) of mtDNA, and appointed relevant haplogroups according to the sequence polymorphism using the known mtDNA database. We also applied variable short tandem repeat (STR) marker in Y chromosome to understand paternal lineage and kinship among the burials. Especially, we interested in the four burying together and examined genetic relationship more closely between two individuals.

Not quite in the bag: A systematic bioarchaeological approach to the question of South American chickens origins


Greger Larson
1 Dept. of Archaeology, Durham University, South Road, DH1 3LE, UK

Though chickens were undoubtedly introduced into the American continents by the Spanish after their arrival in the 15th century, there is an ongoing debate as to the possible that Polynesians traveling across the Pacific introduced chickens to South America before Europeans did so. A recent publication concluded on the basis of ancient DNA extracted from an archaeological Chilean chicken bone that domestic fowl were present in a pre-Columbian context and that those chickens possessed a Polynesian genetic signature. In order to test this hypothesis, we generated mitochondrial DNA control region sequences from 41 modern, native Chilean specimens and analyzed them within a database consisting of both the published ancient DNA sequences and ~1,000 globally distributed modern domestic chicken sequences. Our modern Chilean sequences cluster closely with haplotypes predominantly distributed amongst European, Indian, and Southeast Asian chickens, consistent with a European genetic origin. The previously published, apparently pre-Columbian, Chilean specimen and seven pre-European Polynesian specimens, also cluster with the same European/Indian subcontinental/Southeast Asian sequences, providing, at this stage, no support for a Polynesian introduction of chickens to South America. Ancient DNA sequences from two archaeological sites on Easter Island, however, cluster with chickens found in Island Southeast Asia, and may represent a genetic signature of an early Polynesian dispersal as far as Easter Island. Lastly, we modeled the potential marine carbon contribution to the Chilean archaeological specimen (thus revising the derived date of the specimen) which cast doubt on the pre-Columbian age of the chicken remains. Definitive proof of a pre-Columbian introduction will require excavating more chicken bones, and further analyses of ancient DNA and radiocarbon data from Chilean and Polynesian archaeological excavations.

A New Bioarchaeological Clue for the DongHu Nationality

ZHANG Quan-chao, CHANG E
ZHU Hong

( Research Center f or Chinese Frontier A rchaeology , Jilin University , Changchun , Jilin , 130012 , China)

Abstract: DongHu nationality is a branch the Hu population who acted actively in the northeast of Yan. Whilst the remains of DongHu had not been confirmed for a long time, The tombs discovered in linxi Jinggouzi site in 2002 suggested a new clue for exploring the remains of Donghu in Chifeng area. These tombs not only meet the condionons in relation to DongHu in the aspects of time and region, but also conformed to DongHu characteristics of economic style and ethic features. In this article, human remains unearthed from the Spring and Autumn-Warring states cemetery at the Jinggouzi site in Linxi county, Inner Mongolia were studied. The morphological features of Jinggouzi group crania show that the racial type is closely related to the modern North Asiatic Mongoloids, and some physical characteristics of these skulls are closer to the ancient XianBei population in the north China and the modern Mongol. Ancient DNA sequences from ancient human remains have provided very important information on human evolution, blood relationship and migration, making ancient DNA research an important field of molecular anthropology. This study illustrates ancient DNA extraction, amplification and sequencing of five individuals of an ancient population buried in the west cemetery at Jinggouzi site in Inner Mongolia. A phylogenetic tree, a two-dimensional PC plot and MDS plot are constructed using mtDNA sequences from the ancient population and several modern Eurasian populations. However, the application of the techniques of ancient DNA allows us to explore the fasten source of the ancient population. Therefore, the genetic evidence raise the important meaning for the study of archeological culture in the east of Inner Mongolia during Spring and Autumn-Warring states. In addition, this new study which based on genetics and traditional archaeology on the development of populations from the north steppes of our country during Spring and Autumn-Warring states, provides precious data. In this study, we examine Jinggouzi population paleodiet using stable isotope ratios of carbon and nitrogen in bone collagen. Nitrogen isotope ratios of bone collagen show that Jinggouzi ancient population in primarily ate animal products with only a small amount of plant products. Carbon isotope ratios of bone collagen show that most plant products come from C4 plant.

Physical anthropology

Obtaining population genetics data via non-destructive means: a three-dimensional analysis of human craniofacial morphology

Sabrina B. Sholts1, Sebastian Wärmländer2, & Phillip L. Walker3
1 Department of Anthropology, University of California at Santa Barbara, Department of Anthropology, University of California, Santa Barbara, CA 93106, USA

2 Division of Biophysics, Arrhenius Laboratories for Natural Science, Stockholm University, 10691 Stockholm, Sweden

3 Department of Anthropology, University of California at Santa Barbara, Department of Anthropology, University of California, Santa Barbara, CA 93106, USA

In this study, shapes extracted from the human craniofacial skeleton were used to investigate the genetic heritabilities of morphological traits. Three-dimensional point data was collected from human crania with a 3D laser scanner and used to render complete 3D surface models of the original skeletal material. 3D data analysis software was used to digitally slice the cranial models with geometric planes defined by traditional craniometric landmarks. The cross-sections produced by these planes yielded contours of cranial outlines for different craniofacial features. Using elliptical Fourier transforms, the contours were parametrized into series of Fourier coefficients, which, due to their inherent orthogonality, form suitable input parameters for statistical analysis. Principal components analysis (PCA) was employed to differentiate population groups based on shape differences in various aspects of cranio-facial skeletal morphology. This method can yield population genetics data and information on probable ancestral affinity using non-destructive analysis of human remains and with greater accuracy than with traditional craniometric studies of metric and non-metric traits. The application of this method to human skeletal collections can elucidate genetic relationships in past populations and improve our understanding of their archaeological contexts. This non-invasive method also offers a viable alternative for determining ancestral affinities between groups and individuals in cases where DNA testing is not possible, due to either the necessary destruction of bone required for DNA analysis or the degraded condition of the material.