Wikipedia article on Volga Tatars. Some pictures of Kazan Tatars, which look just about what you would expect for 16% eastern Asian mtDNA, i.e., primarily Caucasoid but with visible traces of Mongoloid admixture
Molecular Biology and Evolution, doi:10.1093/molbev/msq065
Mitogenomic diversity in Tatars from the Volga-Ural region of Russia
B. Malyarchuk et al.
To investigate diversity of mitochondrial gene pool of Tatars inhabiting the territory of the middle Volga River basin, 197 individuals from two populations representing Kazan Tatars and Mishars were subjected for analysis of mitochondrial DNA (mtDNA) control region variation. In addition, 73 mitochondrial genomes of individuals from Mishar population were sequenced completely. It was found that mitochondrial gene pool of the Volga Tatars consists of two parts, but western Eurasian component prevails considerably (84% on average) over eastern Asian one (16%). Eastern Asian mtDNAs detected in Tatars belonged to a heterogeneous set of haplogroups (A, C, D, G, M7, M10, N9a, Y, Z), although only haplogroups A and D were revealed simultaneously in both populations. Complete mtDNA variation study revealed that the age of western Eurasian haplogroups (such as U4, HV0a and H) is less than 18,000 years, thus suggesting re-expansion of Eastern Europeans soon after the Last Glacial Maximum.
Link
Showing posts with label Tatars. Show all posts
Showing posts with label Tatars. Show all posts
May 12, 2010
September 28, 2009
Y chromosomes of Teleuts
The arrival of R1b in the east remains a mystery. The few prehistoric samples that have been examined did not belong to it, but rather exclusively to R1a1. While some folks (e.g. Spencer Wells) speak about the arrival of R1b in Europe from Central Asia, I consider this almost certainly false, for a very simple reason: there is absolutely no reason why R1b would head stubbornly west and not east. The complete absence of R1b in East Asia, and its near-complete absence in India, makes a long-term presence of it in Central Asia unbelievable.
Genetika. 2009 Aug;45(8):1132-42.
The gene pool structure of Teleuts was examined and Y-chromosomal haplogroups composition and frequencies were determined. In the gene pool of Teleuts, five haplogroups, C3xM77, N3a, R1b*, R1b3, and R1a1, were identified. Evaluation of the genetic differentiation of the samples examined using analysis of molecular variance (AMOVA) with two marker systems (frequencies of haplogroups and Y-chromosomal microsatellite haplotypes) showed that Bachat Teleuts were equally distant from Southern and Northern Altaians. In Siberian populations, the frequencies and molecular phylogeny of the YSTR haplotypes within Y-chromosomal haplogroup R1a1 were examined. It was demonstrated that Teleuts and Southern Altaians had very close and overlapping profiles of R1a1 haplotypes. Population cluster analysis of the R1a1 YSTR haplotypes showed that Teleuts and Southern Altaians were closer to one another than to all remaining Siberian ethnic groups. Phylogenetic analysis of N3a haplotypes suggested specificity of Teleut haplotypes and their closeness to those of Tomsk Tatars. Teleuts were characterized by extremely high frequency of haplogroup R1b*, distinguished for highly specific profile of YSTR haplotypes and high haplotype diversity. The results of the comparative analysis suggested that the gene pool of Bachat Teleuts was formed on the basis of at least two heterogeneous genetic components, probably associated with ancient Turkic and Samoyedic ethnic components.
Link
Genetika. 2009 Aug;45(8):1132-42.
[Comparative characteristics of the gene pool of Teleuts inferred from Y-chromosomal marker data]
[Article in Russian]
[No authors listed]
[Article in Russian]
[No authors listed]
The gene pool structure of Teleuts was examined and Y-chromosomal haplogroups composition and frequencies were determined. In the gene pool of Teleuts, five haplogroups, C3xM77, N3a, R1b*, R1b3, and R1a1, were identified. Evaluation of the genetic differentiation of the samples examined using analysis of molecular variance (AMOVA) with two marker systems (frequencies of haplogroups and Y-chromosomal microsatellite haplotypes) showed that Bachat Teleuts were equally distant from Southern and Northern Altaians. In Siberian populations, the frequencies and molecular phylogeny of the YSTR haplotypes within Y-chromosomal haplogroup R1a1 were examined. It was demonstrated that Teleuts and Southern Altaians had very close and overlapping profiles of R1a1 haplotypes. Population cluster analysis of the R1a1 YSTR haplotypes showed that Teleuts and Southern Altaians were closer to one another than to all remaining Siberian ethnic groups. Phylogenetic analysis of N3a haplotypes suggested specificity of Teleut haplotypes and their closeness to those of Tomsk Tatars. Teleuts were characterized by extremely high frequency of haplogroup R1b*, distinguished for highly specific profile of YSTR haplotypes and high haplotype diversity. The results of the comparative analysis suggested that the gene pool of Bachat Teleuts was formed on the basis of at least two heterogeneous genetic components, probably associated with ancient Turkic and Samoyedic ethnic components.
Link
May 06, 2006
The Slavs in Russia
I believe that this is related to my recent post on Y chromosomes and mtDNA of Russians.
How the Slavs conquered Russia (Informnauka (Informscience) Agency):
Geneticist specialists from the Institute of Biological Problems of the North, Far-East Branch of Russian Academy of Sciences, are reconstructing the picture of Eurasia colonization by the Slavs. According to the researchers’ opinion, the Slavonic men and women jointly developed the territory of the south of contemporary Russia. However, after the 9th century, women used to stay at home, and colonization of the east and north was mainly performed by men.
This conclusion was made by geneticists through analyzing variable consecutions of DNA of mitochondria and of some sections of Y-chromosome with representatives of 10 Russian populations from the Stavropol Territory in the south through the Pskov Region in the north and from the Orel Region in the west through the Nizhni Novgorod Region in the east. The mitochondrial DNA is inherited from generation to generation along a female line, DNA of Y- chromosome – along a male line. Analysis of variability of these consecutions allows to judge about migrations of our forefathers and foremothers.
Along the maternal line, Russian populations are rather close to each other. They can be conditionally split into two zones. Inhabitants of the south-eastern zone (including the Orel, Rostov, Kursk, Kaluga and Saratov Regions and the Stavropol Territory) have the roots among western Slavs, Baltic and some Finno-Ugric nations (Poles, Lithuanians and Estonians). Ancestors of Russians in the north-eastern zone took wives from the Finno-Ugric and other nations of Eastern Europe (Finns, Karelians, Maris, Tatars and Adygeis).
Comparison of Y-chromosomes of Russian populations provides different results. Only the Pskov and coast-dweller populations are close along the paternal line to the Finno-Ugric and Baltic nations of the Northern and Eastern Europe, the overwhelming majority of Russians are relatives to the Poles, Ukrainians and Byelorussians. Judging by consecution variations of the “male” chromosome, the Slavs, arriving in various locations of Eastern Europe, contacted in different ways with residential population: in some places - closely and in some others – otherwise.
Genetic analysis results agree with the anthropological data, according to which Russian populations can be divided into three zones. In the western part of the ethnic territory, Russians descend from the Slavs who had come from Central Europe. Russian population of the central part appeared as a result of mixture of the Slavs with the Finno-Ugric nations, Eastern European mothers dominating in these populations, and the population of the North evidently has in its genealogy Finno-Ugric ancestors of both sexes. According to the geneticists, the reasons for these differences are caused by different participation of men and women in Slavonic migrations. Women apparently participated only in early phases of the Slavs’ migration into Eastern Europe. Starting from the 9th century, colonization of the east and the north of Eastern Europe was mainly performed by men who chose wives from residential population. The obtained picture needs more precise definition, therefore the researchers are planning to further investigate variability of specific “maternal” and “ paternal” DNAs in different Russian populations.
How the Slavs conquered Russia (Informnauka (Informscience) Agency):
Geneticist specialists from the Institute of Biological Problems of the North, Far-East Branch of Russian Academy of Sciences, are reconstructing the picture of Eurasia colonization by the Slavs. According to the researchers’ opinion, the Slavonic men and women jointly developed the territory of the south of contemporary Russia. However, after the 9th century, women used to stay at home, and colonization of the east and north was mainly performed by men.
This conclusion was made by geneticists through analyzing variable consecutions of DNA of mitochondria and of some sections of Y-chromosome with representatives of 10 Russian populations from the Stavropol Territory in the south through the Pskov Region in the north and from the Orel Region in the west through the Nizhni Novgorod Region in the east. The mitochondrial DNA is inherited from generation to generation along a female line, DNA of Y- chromosome – along a male line. Analysis of variability of these consecutions allows to judge about migrations of our forefathers and foremothers.
Along the maternal line, Russian populations are rather close to each other. They can be conditionally split into two zones. Inhabitants of the south-eastern zone (including the Orel, Rostov, Kursk, Kaluga and Saratov Regions and the Stavropol Territory) have the roots among western Slavs, Baltic and some Finno-Ugric nations (Poles, Lithuanians and Estonians). Ancestors of Russians in the north-eastern zone took wives from the Finno-Ugric and other nations of Eastern Europe (Finns, Karelians, Maris, Tatars and Adygeis).
Comparison of Y-chromosomes of Russian populations provides different results. Only the Pskov and coast-dweller populations are close along the paternal line to the Finno-Ugric and Baltic nations of the Northern and Eastern Europe, the overwhelming majority of Russians are relatives to the Poles, Ukrainians and Byelorussians. Judging by consecution variations of the “male” chromosome, the Slavs, arriving in various locations of Eastern Europe, contacted in different ways with residential population: in some places - closely and in some others – otherwise.
Genetic analysis results agree with the anthropological data, according to which Russian populations can be divided into three zones. In the western part of the ethnic territory, Russians descend from the Slavs who had come from Central Europe. Russian population of the central part appeared as a result of mixture of the Slavs with the Finno-Ugric nations, Eastern European mothers dominating in these populations, and the population of the North evidently has in its genealogy Finno-Ugric ancestors of both sexes. According to the geneticists, the reasons for these differences are caused by different participation of men and women in Slavonic migrations. Women apparently participated only in early phases of the Slavs’ migration into Eastern Europe. Starting from the 9th century, colonization of the east and the north of Eastern Europe was mainly performed by men who chose wives from residential population. The obtained picture needs more precise definition, therefore the researchers are planning to further investigate variability of specific “maternal” and “ paternal” DNAs in different Russian populations.
Subscribe to:
Posts (Atom)