What makes dancers different than the rest of us? Genetic variants, says a researcher at the Hebrew University of Jerusalem.
In a study published in the American journal, Public Library of Science Genetics, Psychology Prof. Richard P. Ebstein and his research associates have shown, through DNA examination, that dancers show consistent differences in two key genes from the general population. Ebstein is the head of the Hebrew University Psychology Department's Scheinfeld Center for Human Genetics in the Social Sciences.
This finding is not surprising, says Ebstein, in view of other studies of musicians and athletes, which also have shown genetic differences.
Ebstein and his colleagues found in an examination of 85 dancers and advanced dancing students in Israel variants of two genes that provide the code for the serotonin transporter and arginine vasopressin receptor 1a.
Both genes are involved in the transmission of information between nerve cells. The serotonin transporter regulates the level of serotonin, a brain transmitter that contributes to spiritual experience, among many other behavioral traits. The vasopressin receptor has been shown in many animal studies to modulate social communication and affiliative bonding behaviors. Both are elements involved in the age-old human social expression of dancing.
The genetic evidence was corroborated by two questionnaires distributed by the researchers to the dancers. One is the Tellegen Absorption Scale (TAS), that correlates aspects of spirituality and altered states of consciousness, and the other is the Tridimensional Personality Questionnaire (TPQ), a measure of the need for social contact and openness to communication.
The genetic and questionnaire results of the dancers were compared with those of two other groups examined – athletes as well as those who were both non-dancers and non-athletes. (Athletes were chosen for comparison since they require a good deal of physical stamina like dancers.)
When the results were combined and analyzed, it was clearly shown that the dancers exhibited particular genetic and personality characteristics that were not found in the other two groups.
The dancer "type," says Ebstein, clearly demonstrates qualities that are not necessarily lacking but are not expressed as strongly in other people: a heightened sense of communication, often of a symbolic and ceremonial nature, and a strong spiritual personality trait.
Others involved in the research with Ebstein were his Ph.D. student Rachel Bachner- Melman, as well as additional researchers from Israel and France.
PLoS Genetics Volume 1 Issue 3 SEPTEMBER 2005
AVPR1a and SLC6A4 Gene Polymorphisms Are Associated with Creative Dance Performance
Rachel Bachner-Melman et al.
Dancing, which is integrally related to music, likely has its origins close to the birth of Homo sapiens, and throughout our history, dancing has been universally practiced in all societies. We hypothesized that there are differences among individuals in aptitude, propensity, and need for dancing that may partially be based on differences in common genetic polymorphisms. Identifying such differences may lead to an understanding of the neurobiological basis of one of mankind's most universal and appealing behavioral traits—dancing. In the current study, 85 current performing dancers and their parents were genotyped for the serotonin transporter (SLC6A4: promoter region HTTLPR and intron 2 VNTR) and the arginine vasopressin receptor 1a (AVPR1a: promoter microsatellites RS1 and RS3). We also genotyped 91 competitive athletes and a group of nondancers/nonathletes (n = 872 subjects from 414 families). Dancers scored higher on the Tellegen Absorption Scale, a questionnaire that correlates positively with spirituality and altered states of consciousness, as well as the Reward Dependence factor in Cloninger's Tridimensional Personality Questionnaire, a measure of need for social contact and openness to communication. Highly significant differences in AVPR1a haplotype frequencies (RS1 and RS3), especially when conditional on both SLC6A4 polymorphisms (HTTLPR and VNTR), were observed between dancers and athletes using the UNPHASED program package (Cocaphase: likelihood ratio test [LRS] = 89.23, p = 0.000044). Similar results were obtained when dancers were compared to nondancers/nonathletes (Cocaphase: LRS = 92.76, p = 0.000024). These results were confirmed using a robust family-based test (Tdtphase: LRS = 46.64, p = 0.010). Association was also observed between Tellegen Absorption Scale scores and AVPR1a (Qtdtphase: global chi-square = 26.53, p = 0.047), SLC6A4 haplotypes (Qtdtphase: chi-square = 2.363, p = 0.018), and AVPR1a conditional on SCL6A4 (Tdtphase: LRS = 250.44, p = 0.011). Similarly, significant association was observed between Tridimensional Personality Questionnaire Reward Dependence scores and AVPR1a RS1 (chi-square = 20.16, p = 0.01). Two-locus analysis (RS1 and RS3 conditional on HTTLPR and VNTR) was highly significant (LRS = 162.95, p = 0.001). Promoter repeat regions in the AVPR1a gene have been robustly demonstrated to play a role in molding a range of social behaviors in many vertebrates and, more recently, in humans. Additionally, serotonergic neurotransmission in some human studies appears to mediate human religious and spiritual experiences. We therefore hypothesize that the association between AVPR1a and SLC6A4 reflects the social communication, courtship, and spiritual facets of the dancing phenotype rather than other aspects of this complex phenotype, such as sensorimotor integration.
Link
No comments:
Post a Comment