Anthropologischer Anzeiger doi:10.1127/anthranz/2015/0458
Craniofacial plasticity in ancient Peru
Jessica H. Stone; Kristen Chew; Ann H. Ross; John W. Verano
Numerous studies have utilized craniometric data to explore the roles of genetic diversity and environment in human cranial shape variation. Peru is a particularly interesting region to examine cranial variation due to the wide variety of high and low altitude ecological zones, which in combination with rugged terrain have created isolated populations with vastly different physiological adaptations. This study examines seven samples from throughout Peru in an effort to understand the contributions of environmental adaptation and genetic relatedness to craniofacial variation at a regional scale. Morphological variation was investigated using a canonical discriminant analysis and Mahalanobis D2 analysis. Results indicate that all groups are significantly different from one another with the closest relationship between Yauyos and Jahuay, two sites that are located geographically close in central Peru but in very different ecozones. The relationship between latitude/longitude and face shape was also examined with a spatial autocorrelation analysis (Moran’s I) using ArcMap and show that there is significant spatial patterning for facial measures and geographic location suggesting that there is an association between biological variation and geographic location.
Link
Showing posts with label Peru. Show all posts
Showing posts with label Peru. Show all posts
March 06, 2015
October 26, 2013
New aDNA capture method (plus some data on ancient individuals from Bulgaria, Denmark, and Peru)
This seems to present an alternative method for capture of ancient DNA libraries than the one used on the Tianyuan individual. It is mostly a methods paper, but also has some initial analysis of some ancient individuals. From the paper:
P192-1 was an Iron Age Thracian; T2G5 was from an Iron Age Thracian tumulus burial.
Also:
Hopefully a more complete analysis of this data and production of more data with this method will follow in the future.
The American Journal of Human Genetics (2013), http://dx.doi.org/10.1016/j.ajhg.2013.10.002
Pulling out the 1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA Sequencing Libraries
Meredith L. Carpenter et al.
Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain less than 1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062–147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217–73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples.
Link (pdf)
We were able to tentatively call mtDNA haplogroups for these samples (Table S1). The two Bulgarian Iron Age individuals (P192-1 and T2G5) fell into haplogroups U3b and HV(16311), respectively. Haplogroup U3 is especially common in the countries surrounding the Black Sea, including Bulgaria, and in the Near East, and HV is also found at low frequencies in Europe and peaks in the Near East.41 The three Peruvian mummies fell into haplogroups B2, M (an ancestor of D), and D1, all derived from founder Native American lineages and previously observed in both pre-Columbian and modern populations from Peru.
Also:
For the Peruvian mummies, we also included 10 Native American individuals from Central and South America in the PCA (Figures 3E and 3F). Interestingly, all of the mummies fell between the Native American populations (KAR, MAY, AYM) and East Asian populations (JPT, CHS, CHB), as would be expected for a nonadmixed Native American individual (Figures 3E, 3F, and S2). These mummies belonged to the pre-Columbian Chachapoya culture, who, by some accounts, were unusually fair-skinned,39 suggesting a potential for pre- Columbian European admixture. However, based on our preliminary results, these individuals appear to have been ancestrally Native American.The Peruvian mummies were from 1000-1500AD, so it's not very surprising that they don't appear to have European admixture and to be "ancestrally Native American".
Hopefully a more complete analysis of this data and production of more data with this method will follow in the future.
The American Journal of Human Genetics (2013), http://dx.doi.org/10.1016/j.ajhg.2013.10.002
Pulling out the 1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA Sequencing Libraries
Meredith L. Carpenter et al.
Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain less than 1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062–147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217–73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples.
Link (pdf)
July 17, 2012
Blood group of pre-Columbian Peruvian highlanders
AJPA DOI: 10.1002/ajpa.22115
Molecular characterization of ABO blood group frequencies in pre-Columbian Peruvian highlanders
Léa Georges et al.
The majority of Native Americans nearly exclusively belong to group O of the ABO blood group system. Several hypotheses have been formulated to explain this observation, primarily differing by the presumption that the observed patterns of ABO diversity are due to the processes of the initial peopling of the Americas or due to subsequent events, especially the demographic consequences in the wake of European contact. A promising strategy to reveal possible diachronic ABO frequency changes is the molecular genetic analysis of relevant genetic markers in precontact populations. A previous study by Halverson and Bolnick [Am J Phys Anthropol 137 (2008) 342-347] already accomplished this for indigenous North American populations. Here we present the first study to analyze ABO blood types from pre-Columbian individuals from South America using molecular genetic methods and comparing them to several extant South American, North American, and Siberian populations. We tried to determine ABO blood types for 59 individuals from the southern Peruvian highlands dating to ∼650 to 1250 AD using a newly developed multiplex PCR/SBE assay coamplifying the fragments relevant for blood type determination and three highly discriminating autosomal STRs. Analysis was successful for 31 individuals and revealed that all are exclusively in the O group, predominantly carrying the O02 (01v) allele. No significant difference could be observed between the ancient and modern Native American populations, while all significantly differed from the extant Siberian populations, supporting the suggestion that low ABO diversity results from founder effects during the initial peopling of the Americas.
Link
Molecular characterization of ABO blood group frequencies in pre-Columbian Peruvian highlanders
Léa Georges et al.
The majority of Native Americans nearly exclusively belong to group O of the ABO blood group system. Several hypotheses have been formulated to explain this observation, primarily differing by the presumption that the observed patterns of ABO diversity are due to the processes of the initial peopling of the Americas or due to subsequent events, especially the demographic consequences in the wake of European contact. A promising strategy to reveal possible diachronic ABO frequency changes is the molecular genetic analysis of relevant genetic markers in precontact populations. A previous study by Halverson and Bolnick [Am J Phys Anthropol 137 (2008) 342-347] already accomplished this for indigenous North American populations. Here we present the first study to analyze ABO blood types from pre-Columbian individuals from South America using molecular genetic methods and comparing them to several extant South American, North American, and Siberian populations. We tried to determine ABO blood types for 59 individuals from the southern Peruvian highlands dating to ∼650 to 1250 AD using a newly developed multiplex PCR/SBE assay coamplifying the fragments relevant for blood type determination and three highly discriminating autosomal STRs. Analysis was successful for 31 individuals and revealed that all are exclusively in the O group, predominantly carrying the O02 (01v) allele. No significant difference could be observed between the ancient and modern Native American populations, while all significantly differed from the extant Siberian populations, supporting the suggestion that low ABO diversity results from founder effects during the initial peopling of the Americas.
Link
April 23, 2012
Ancient DNA from pre-Columbian Andean community
BMC Genetics 2012, 13:30 doi:10.1186/1471-2156-13-30
Ancient DNA reveals kinship burial patterns of a pre-Columbian Andean community
Mateusz Baca et al.
Abstract (provisional)
Background
A detailed genetic study of the pre-Columbian population inhabiting the Tompullo 2 archaeological site (department Arequipa, Peru) was undertaken to resolve the kin relationships between individuals buried in six different chullpas. Kin relationships were an important factor shaping the social organization in the pre-Columbian Andean communities, centering on the ayllu, a group of relatives that shared a common land and responsibilities. The aim of this study was to evaluate whether this Andean model of a social organization had an influence on mortuary practices, in particular to determine whether chullpas served as family graves.
Results
The remains of forty-one individuals were analyzed with both uniparental (mtDNA, Y-chromosome) and biparental (autosomal microsatellites) markers. Reproducible HVRI sequences, autosomal and Y chromosomal STR profiles were obtained for 24, 16 and 11 individuals, respectively. Mitochondrial DNA diversity was comparable to that of ancient and contemporary Andean populations. The Tompullo 2 population exhibited the closest relationship with the modern population from the same region. A kinship analysis revealed complex pattern of relations within and between the graves. However mean relatedness coefficients regarding the pairs of individuals buried in the same grave were significantly higher than those regarding pairs buried in different graves. The Y chromosome profiles of 11 males suggest that only members of one male line were buried in the same grave.
Conclusions
Genetic investigation of the population that inhabited Tompullo 2 site shows continuity between pre-Columbian and modern Native Amerindian populations inhabiting the Arequipa region. This suggests that no major demographic processes have influenced the mitochondrial DNA diversity of these populations during the past five hundred years. The kinship analysis involving uni- and biparental markers suggests that the community that inhabited the Tompullo 2 site was organized into extended family groups that were buried in different graves. This finding is in congruence with known models of social organization of Andean communities.
Link
Ancient DNA reveals kinship burial patterns of a pre-Columbian Andean community
Mateusz Baca et al.
Abstract (provisional)
Background
A detailed genetic study of the pre-Columbian population inhabiting the Tompullo 2 archaeological site (department Arequipa, Peru) was undertaken to resolve the kin relationships between individuals buried in six different chullpas. Kin relationships were an important factor shaping the social organization in the pre-Columbian Andean communities, centering on the ayllu, a group of relatives that shared a common land and responsibilities. The aim of this study was to evaluate whether this Andean model of a social organization had an influence on mortuary practices, in particular to determine whether chullpas served as family graves.
Results
The remains of forty-one individuals were analyzed with both uniparental (mtDNA, Y-chromosome) and biparental (autosomal microsatellites) markers. Reproducible HVRI sequences, autosomal and Y chromosomal STR profiles were obtained for 24, 16 and 11 individuals, respectively. Mitochondrial DNA diversity was comparable to that of ancient and contemporary Andean populations. The Tompullo 2 population exhibited the closest relationship with the modern population from the same region. A kinship analysis revealed complex pattern of relations within and between the graves. However mean relatedness coefficients regarding the pairs of individuals buried in the same grave were significantly higher than those regarding pairs buried in different graves. The Y chromosome profiles of 11 males suggest that only members of one male line were buried in the same grave.
Conclusions
Genetic investigation of the population that inhabited Tompullo 2 site shows continuity between pre-Columbian and modern Native Amerindian populations inhabiting the Arequipa region. This suggests that no major demographic processes have influenced the mitochondrial DNA diversity of these populations during the past five hundred years. The kinship analysis involving uni- and biparental markers suggests that the community that inhabited the Tompullo 2 site was organized into extended family groups that were buried in different graves. This finding is in congruence with known models of social organization of Andean communities.
Link
November 24, 2010
mtDNA and Y chromosomes from pre-Columbian Andean Highlanders
They found all A, B, C, D mtDNA haplogroups. The evidence for genetic continuity can probably be ascribed to the small timespan to the present, and the relative isolation of Amerindians in comparison to populations of Eurasia where genetic discontinuities have been discovered over longer time periods.
Annals of Human Genetics doi: 10.1111/j.1469-1809.2010.00620.x
Diachronic Investigations of Mitochondrial and Y-Chromosomal Genetic Markers in Pre-Columbian Andean Highlanders from South Peru
Lars Fehren-Schmitz et al.
This study examines the reciprocal effects of cultural evolution, and population dynamics in pre-Columbian southernPeru by the analysis of DNA from pre-Columbian populations that lived in the fringe area between the Andean highlandsand the Pacific coast. The main objective is to reveal whether the transition from the Middle Horizon (MH: 650–1000 AD) to the Late Intermediate Period (LIP: 1000–1400 AD) was accompanied or influenced by population dynamic processes. Tooth samples from 90 individuals from several archaeological sites, dating to the MH and LIP, in the researcharea were collected to analyse mitochodrial, and Y-chromosomal genetic markers. Coding region polymorphisms weresuccessfully analysed and replicated for 72 individuals, as were control region sequences for 65 individuals and Ychromosomalsingle nucleotide polymorphisms (SNPs) for 19 individuals, and these were compared to a large set ofancient and modern indigenous South American populations. The diachronic comparison of the upper valley samples from both time periods reveals no genetic discontinuities accompanying the cultural dynamic processes. A high genetic affinity for other ancient and modern highland populations can be observed, suggesting genetic continuity in the Andean highlands at the latest from the MH. A significant matrilineal differentiation to ancient Peruvian coastal populations can be observed suggesting a differential population history.
Link
From the paper:
All individuals belong to haplogroup Q1a3a∗. Only individuals where it was possible to determine the full profile of six SNPs are considered here. There is a high number of individuals showing allelic dropout, presumably due to DNA degradation, for one or more SNPs. For two individuals with realised polymorphisms in M242 and M3, only M19 could not be typed, so there is a chance that these individuals could belong to haplogroup Q1a3a2 and not Q1a3a∗.
Annals of Human Genetics doi: 10.1111/j.1469-1809.2010.00620.x
Diachronic Investigations of Mitochondrial and Y-Chromosomal Genetic Markers in Pre-Columbian Andean Highlanders from South Peru
Lars Fehren-Schmitz et al.
This study examines the reciprocal effects of cultural evolution, and population dynamics in pre-Columbian southernPeru by the analysis of DNA from pre-Columbian populations that lived in the fringe area between the Andean highlandsand the Pacific coast. The main objective is to reveal whether the transition from the Middle Horizon (MH: 650–1000 AD) to the Late Intermediate Period (LIP: 1000–1400 AD) was accompanied or influenced by population dynamic processes. Tooth samples from 90 individuals from several archaeological sites, dating to the MH and LIP, in the researcharea were collected to analyse mitochodrial, and Y-chromosomal genetic markers. Coding region polymorphisms weresuccessfully analysed and replicated for 72 individuals, as were control region sequences for 65 individuals and Ychromosomalsingle nucleotide polymorphisms (SNPs) for 19 individuals, and these were compared to a large set ofancient and modern indigenous South American populations. The diachronic comparison of the upper valley samples from both time periods reveals no genetic discontinuities accompanying the cultural dynamic processes. A high genetic affinity for other ancient and modern highland populations can be observed, suggesting genetic continuity in the Andean highlands at the latest from the MH. A significant matrilineal differentiation to ancient Peruvian coastal populations can be observed suggesting a differential population history.
Link
July 30, 2009
mtDNA from pre-Columbian Peru
Yet another case in which differentiation of ancient with modern inhabitants is established. The paper discusses this issue:
The significant differentiation between the ancient Peruvian coastal populations (Shimada et al., 2004; this study) to the ancient highland and modern Peruvian populations cannot be explained satisfyingly in this moment. Although a recent work of Lewis (2009) shows that for genetic differences between the ancient and contemporary Andean populations genetic drift cannot be rejected as a cause, especially when only relying on mitochondrial haplogroup data, this explanation does not fit for the observed coast-highland differentiation. When the Palpa data is compared diachronically, new haplogroups and haplotypes appear and the overall genetic variability in all studied populations is high. Beside the genetic data, the insights in the cultural dynamic processes show that there were relatively large populations, dynamic processes of spatial and intercultural exchange. All those observations definitely are not compatible with the genetic drift scenario. But, the influences of the evolutionary forces on the observed genetic distribution patterns have to be taken into account and can not be utterly rejected. When compared with more mitochondrial datasets from South America, the Palpa populations show a high affinity to the contemporary indigenous populations of the Southern Andes and Tierra del Fuego like the Mapuche, Pehuenche, and Yaghan in Chile (Moraga et al., 2000). All the three populations show high frequencies of haplogroups C (41%–48%) and D (46%–52%) comparable with the prehistoric Palpa and Paracas Peninsula populations (cf. Table 4).The current paper is a great step forward in the study of South American prehistory, as the large samples allow us to speak quite confidently about gene pool compositions.
A real problem faced by ancient DNA studies is that of inference of population movements based on modern haplogroup frequencies. Is the similarity between prehistoric Palpa and Paracas Peruvians (high C and D, almost non-existent A) with modern Southern Andeans and Tierra del Fuegoans the result of a genetic relationship? It is hard to arrive at any conclusions until we see what prehistoric Southern Andeans and Tierra del Fuegoans looked like.
The same problem was faced in the study of Etruscans, where relationships of modern Tuscans or ancient Etruscans with the modern Near East were discovered, but such relationships have a question mark next to them until we study the ancient Near East directly.
Hopefully, in the coming years, it will become more feasible to fill up the map of ancient mtDNA gene pools in several locations around the world, allowing us both to understand facets of mtDNA evolution, as well as to correct our inferences of population movements based on modern-day haplogroup distributions.
American Journal of Physical Anthropology doi:10.1002/ajpa.21135
Pre-Columbian population dynamics in coastal southern Peru: A diachronic investigation of mtDNA patterns in the Palpa region by ancient DNA analysis
Lars Fehren-Schmitz et al.
Abstract
Alternative models have been proposed to explain the formation and decline of the south Peruvian Nasca culture, ranging from migration or invasion to autochthonous development and ecological crisis. To reveal to what extent population dynamic processes accounted for cultural development in the Nasca mainland, or were influenced by them, we analyzed ancient mitochondrial DNA of 218 individuals, originating from chronologically successive archaeological sites in the Palpa region, the Paracas Peninsula, and the Andean highlands in southern Peru. The sampling strategy allowed a diachronic analysis in a time frame from approximately 800 BC to 800 AD. Mitochondrial coding region polymorphisms were successfully analyzed and replicated for 130 individuals and control region sequences (np 16021-16408) for 104 individuals to determine Native American mitochondrial DNA haplogroups and haplotypes. The results were compared with ancient and contemporary Peruvian populations to reveal genetic relations of the archaeological samples. Frequency data and statistics show clear proximity of the Nasca populations to the populations of the preceding Paracas culture from Palpa and the Peninsula, and suggest, along with archaeological data, that the Nasca culture developed autochthonously in the Rio Grande drainage. Furthermore, the influence of changes in socioeconomic complexity in the Palpa area on the genetic diversity of the local population could be observed. In all, a strong genetic affinity between pre-Columbian coastal populations from southern Peru could be determined, together with a significant differentiation from ancient highland and all present-day Peruvian reference populations, best shown in the differential distribution of mitochondrial haplogroups.
Link
American Journal of Physical Anthropology doi:10.1002/ajpa.21135
Pre-Columbian population dynamics in coastal southern Peru: A diachronic investigation of mtDNA patterns in the Palpa region by ancient DNA analysis
Lars Fehren-Schmitz et al.
Abstract
Alternative models have been proposed to explain the formation and decline of the south Peruvian Nasca culture, ranging from migration or invasion to autochthonous development and ecological crisis. To reveal to what extent population dynamic processes accounted for cultural development in the Nasca mainland, or were influenced by them, we analyzed ancient mitochondrial DNA of 218 individuals, originating from chronologically successive archaeological sites in the Palpa region, the Paracas Peninsula, and the Andean highlands in southern Peru. The sampling strategy allowed a diachronic analysis in a time frame from approximately 800 BC to 800 AD. Mitochondrial coding region polymorphisms were successfully analyzed and replicated for 130 individuals and control region sequences (np 16021-16408) for 104 individuals to determine Native American mitochondrial DNA haplogroups and haplotypes. The results were compared with ancient and contemporary Peruvian populations to reveal genetic relations of the archaeological samples. Frequency data and statistics show clear proximity of the Nasca populations to the populations of the preceding Paracas culture from Palpa and the Peninsula, and suggest, along with archaeological data, that the Nasca culture developed autochthonously in the Rio Grande drainage. Furthermore, the influence of changes in socioeconomic complexity in the Palpa area on the genetic diversity of the local population could be observed. In all, a strong genetic affinity between pre-Columbian coastal populations from southern Peru could be determined, together with a significant differentiation from ancient highland and all present-day Peruvian reference populations, best shown in the differential distribution of mitochondrial haplogroups.
Link
March 18, 2009
Ancient mtDNA of Wari and post-Wari populations from the Andes
Wikipedia on the Wari culture.
American Journal of Physical Anthropology doi:10.1002/ajpa.21037
Genetic continuity after the collapse of the Wari empire: Mitochondrial DNA profiles from Wari and post-Wari populations in the ancient Andes
Brian M. Kemp et al.
Abstract
The Wari empire flourished in the central, highland Peruvian Andes from AD 600-1000, and although the events that led to its demise are unknown, archaeological evidence indicates that Wari control waned at the end of the first millennium. Here, we test the hypothesis that, despite the major shift in social and political organization at the fall of the Wari empire, the mitochondrial DNA (mtDNA) composition of populations from the Ayacucho Basin, the former imperial heartland of the empire, remained essentially unchanged. Results show that mtDNA haplogroup frequencies among the Wari and post-Wari groups differ, but the difference is not statistically significant (2 = 5.886, df = 3, P = 0.1172). This is the first study in the Andes to use haplotypic data to evaluate the observed genetic distance between two temporally distinct prehispanic populations (FST = 0.029) against modeled expectations of four possible evolutionary scenarios. None of these simulations allowed the rejection of continuity. In total, at both the haplogroup and haplotype levels these data do not allow us to reject the hypothesis that post-Wari individuals sampled in this study are the maternal descendants of those sampled from the Wari era site of Conchopata. However, genetic homogeneity in the mitochondrial gene pool, as seen in the late prehispanic southern Andes, may also characterize our study region. But, prior to this research, this was unknown. If our new data show mtDNA homogeneity, then this could limit the detection of female migration if, in fact, it occurred. Nonetheless, the novel mtDNA data presented here currently do not support the hypothesis that there was an influx of genetically distinct females into the former Wari heartland after the Wari collapse. Am J Phys Anthropol, 2009. © 2009 Wiley-Liss, Inc.
Link
American Journal of Physical Anthropology doi:10.1002/ajpa.21037
Genetic continuity after the collapse of the Wari empire: Mitochondrial DNA profiles from Wari and post-Wari populations in the ancient Andes
Brian M. Kemp et al.
Abstract
The Wari empire flourished in the central, highland Peruvian Andes from AD 600-1000, and although the events that led to its demise are unknown, archaeological evidence indicates that Wari control waned at the end of the first millennium. Here, we test the hypothesis that, despite the major shift in social and political organization at the fall of the Wari empire, the mitochondrial DNA (mtDNA) composition of populations from the Ayacucho Basin, the former imperial heartland of the empire, remained essentially unchanged. Results show that mtDNA haplogroup frequencies among the Wari and post-Wari groups differ, but the difference is not statistically significant (2 = 5.886, df = 3, P = 0.1172). This is the first study in the Andes to use haplotypic data to evaluate the observed genetic distance between two temporally distinct prehispanic populations (FST = 0.029) against modeled expectations of four possible evolutionary scenarios. None of these simulations allowed the rejection of continuity. In total, at both the haplogroup and haplotype levels these data do not allow us to reject the hypothesis that post-Wari individuals sampled in this study are the maternal descendants of those sampled from the Wari era site of Conchopata. However, genetic homogeneity in the mitochondrial gene pool, as seen in the late prehispanic southern Andes, may also characterize our study region. But, prior to this research, this was unknown. If our new data show mtDNA homogeneity, then this could limit the detection of female migration if, in fact, it occurred. Nonetheless, the novel mtDNA data presented here currently do not support the hypothesis that there was an influx of genetically distinct females into the former Wari heartland after the Wari collapse. Am J Phys Anthropol, 2009. © 2009 Wiley-Liss, Inc.
Link
Subscribe to:
Posts (Atom)