The Taiwanese origin of Austronesians is widely accepted. A new preprint confirms this theory, but adds a new twist to the story of Austronesian dispersals, as it seems that in their western expansion, Austronesians picked up some Austroasiatic ancestry. This means either that Austroasiatic speakers preceded them in islands where Austronesian languages are now spoken, or that the Austronesians picked up this kind of ancestry in the mainland before settling in the islands.
bioRxiv, doi: http://dx.doi.org/10.1101/005603
Reconstructing Austronesian population history in Island Southeast Asia
Mark Lipson et al.
Austronesian languages are spread across half the globe, from Easter Island to Madagascar. Evidence from linguistics and archaeology indicates that the "Austronesian expansion," which began 4-5 thousand years ago, likely had roots in Taiwan, but the ancestry of present-day Austronesian-speaking populations remains controversial. Here, focusing primarily on Island Southeast Asia, we analyze genome-wide data from 56 populations using new methods for tracing ancestral gene flow. We show that all sampled Austronesian groups harbor ancestry that is more closely related to aboriginal Taiwanese than to any present-day mainland population. Surprisingly, western Island Southeast Asian populations have also inherited ancestry from a source nested within the variation of present-day populations speaking Austro-Asiatic languages, which have historically been nearly exclusive to the mainland. Thus, either there was once a substantial Austro-Asiatic presence in Island Southeast Asia, or Austronesian speakers migrated to and through the mainland, admixing there before continuing to western Indonesia.
Link
Showing posts with label Austronesian. Show all posts
Showing posts with label Austronesian. Show all posts
May 29, 2014
April 17, 2014
mtDNA history of Oceania (Duggan et al. 2014)
AJHG doi:10.1016/j.ajhg.2014.03.014
Maternal History of Oceania from Complete mtDNA Genomes: Contrasting Ancient Diversity with Recent Homogenization Due to the Austronesian Expansion
Ana T. Duggan et al.
Archaeology, linguistics, and existing genetic studies indicate that Oceania was settled by two major waves of migration. The first migration took place approximately 40 thousand years ago and these migrants, Papuans, colonized much of Near Oceania. Approximately 3.5 thousand years ago, a second expansion of Austronesian-speakers arrived in Near Oceania and the descendants of these people spread to the far corners of the Pacific, colonizing Remote Oceania. To assess the female contribution of these two human expansions to modern populations and to investigate the potential impact of other migrations, we obtained 1,331 whole mitochondrial genome sequences from 34 populations spanning both Near and Remote Oceania. Our results quantify the magnitude of the Austronesian expansion and demonstrate the homogenizing effect of this expansion on almost all studied populations. With regards to Papuan influence, autochthonous haplogroups support the hypothesis of a long history in Near Oceania, with some lineages suggesting a time depth of 60 thousand years, and offer insight into historical interpopulation dynamics. Santa Cruz, a population located in Remote Oceania, is an anomaly with extreme frequencies of autochthonous haplogroups of Near Oceanian origin; simulations to investigate whether this might reflect a pre-Austronesian versus Austronesian settlement of the island failed to provide unequivocal support for either scenario.
Link
Maternal History of Oceania from Complete mtDNA Genomes: Contrasting Ancient Diversity with Recent Homogenization Due to the Austronesian Expansion
Ana T. Duggan et al.
Archaeology, linguistics, and existing genetic studies indicate that Oceania was settled by two major waves of migration. The first migration took place approximately 40 thousand years ago and these migrants, Papuans, colonized much of Near Oceania. Approximately 3.5 thousand years ago, a second expansion of Austronesian-speakers arrived in Near Oceania and the descendants of these people spread to the far corners of the Pacific, colonizing Remote Oceania. To assess the female contribution of these two human expansions to modern populations and to investigate the potential impact of other migrations, we obtained 1,331 whole mitochondrial genome sequences from 34 populations spanning both Near and Remote Oceania. Our results quantify the magnitude of the Austronesian expansion and demonstrate the homogenizing effect of this expansion on almost all studied populations. With regards to Papuan influence, autochthonous haplogroups support the hypothesis of a long history in Near Oceania, with some lineages suggesting a time depth of 60 thousand years, and offer insight into historical interpopulation dynamics. Santa Cruz, a population located in Remote Oceania, is an anomaly with extreme frequencies of autochthonous haplogroups of Near Oceanian origin; simulations to investigate whether this might reflect a pre-Austronesian versus Austronesian settlement of the island failed to provide unequivocal support for either scenario.
Link
January 29, 2014
Austronesian (~1/3) Bantu (~2/3) admixture in Madagascar
Illumina data from this study can be found here.
PNAS doi: 10.1073/pnas.1321860111
Genome-wide evidence of Austronesian–Bantu admixture and cultural reversion in a hunter-gatherer group of Madagascar
Denis Pierron et al.
Linguistic and cultural evidence suggest that Madagascar was the final point of two major dispersals of Austronesian- and Bantu-speaking populations. Today, the Mikea are described as the last-known Malagasy population reported to be still practicing a hunter-gatherer lifestyle. It is unclear, however, whether the Mikea descend from a remnant population that existed before the arrival of Austronesian and Bantu agriculturalists or whether it is only their lifestyle that separates them from the other contemporary populations of South Madagascar. To address these questions we have performed a genome-wide analysis of >700,000 SNP markers on 21 Mikea, 24 Vezo, and 24 Temoro individuals, together with 50 individuals from Bajo and Lebbo populations from Indonesia. Our analyses of these data in the context of data available from other Southeast Asian and African populations reveal that all three Malagasy populations are derived from the same admixture event involving Austronesian and Bantu sources. In contrast to the fact that most of the vocabulary of the Malagasy speakers is derived from the Barito group of the Austronesian language family, we observe that only one-third of their genetic ancestry is related to the populations of the Java-Kalimantan-Sulawesi area. Because no additional ancestry components distinctive for the Mikea were found, it is likely that they have adopted their hunter-gatherer way of life through cultural reversion, and selection signals suggest a genetic adaptation to their new lifestyle.
Link
PNAS doi: 10.1073/pnas.1321860111
Genome-wide evidence of Austronesian–Bantu admixture and cultural reversion in a hunter-gatherer group of Madagascar
Denis Pierron et al.
Linguistic and cultural evidence suggest that Madagascar was the final point of two major dispersals of Austronesian- and Bantu-speaking populations. Today, the Mikea are described as the last-known Malagasy population reported to be still practicing a hunter-gatherer lifestyle. It is unclear, however, whether the Mikea descend from a remnant population that existed before the arrival of Austronesian and Bantu agriculturalists or whether it is only their lifestyle that separates them from the other contemporary populations of South Madagascar. To address these questions we have performed a genome-wide analysis of >700,000 SNP markers on 21 Mikea, 24 Vezo, and 24 Temoro individuals, together with 50 individuals from Bajo and Lebbo populations from Indonesia. Our analyses of these data in the context of data available from other Southeast Asian and African populations reveal that all three Malagasy populations are derived from the same admixture event involving Austronesian and Bantu sources. In contrast to the fact that most of the vocabulary of the Malagasy speakers is derived from the Barito group of the Austronesian language family, we observe that only one-third of their genetic ancestry is related to the populations of the Java-Kalimantan-Sulawesi area. Because no additional ancestry components distinctive for the Mikea were found, it is likely that they have adopted their hunter-gatherer way of life through cultural reversion, and selection signals suggest a genetic adaptation to their new lifestyle.
Link
September 06, 2013
ASHG 2013 abstracts
Feel free to point me to more interesting abstracts than the ones I noticed during my "first pass".
Morphometric and ancient DNA study of human skeletal remanants in Indian Subcontinent.
N. Rai et al.
LL. Kang et al.
F. L. Mendez, M. F. Hammer University of Arizona, Tucson, AZ., USA.
J. C. Martinez-Cruzado et al.
M. Zhabagin et al.
M. Nothnagel et al.
T. Blauwkamp et al.
P. H. Hsieh et al.
A. T. Duggan et al.
Reconstructing Austronesian population history.
M. Lipson et al.
R. Do et al.
J. L. Rodriguez-Flores et al.
C. Lewis et al.
Morphometric and ancient DNA study of human skeletal remanants in Indian Subcontinent.
N. Rai et al.
Recovery and sequencing of mtDNA from ancient human remnants is a daunting task but provides valuable information about human migrations and evolution. Our present study is the first to recover, amplify and sequence (HVR and coding regions of mtDNA) inadequately preserved and highly degraded (1.5 Ky to ≤1.0 Ky ago) hominids mitochondrial DNA of three most intriguing and indigenous ancient population of South and South-East Asia (Myanmar=20 Buried individuals, Nicobar Islands=15 and Andaman Island=6). Following all parameters and to avoid the chance of contamination we independently extracted and sequenced the DNA in two different labs and measured the cranial variability in all hominid skulls using 128 cranial landmarks, compiled 3D morphometrics, genetic data of ancient DNA samples and analyzed the admixture and genetic affinities of above three populations. Results showed the predominant frequency of F1a1 and complete absence of 9bp deletion in ancient Nicobarese. Unlike in previous reports on modern Nicobarese, the high frequency of F1a1 haplogroup in ancient Nicobarese show the probable migration of Nicobarese from South East Asia and the complete absence of 9bp deletion suggests the different events of settlement. This study failed to detect genetic affinities of Burmese with Nicolbarese even though their phenotype and language appears to be same. We first time report any kind of population study on Burmese populations and with the genetic affinity of Burmese with East Asian, East Indian (Including Gadhwal region of Himalaya) and Bangladeshi populations, we found significant admixture with West Eurasians. Our study strongly supports the West Eurasian and East Asian route of migration and settlement of early Burmese population. The three populations in the present study are quite different in their genetic structure but 3D morphometric study using huge number of landmarks explains a close homology among these populations and this can be explained by the role of climatic signature on these populations.Y chromosomes of ancient Hunnu people and its implication on the phylogeny of East Asian linguistic families.
LL. Kang et al.
The Hunnu (Xiongnu) people, also called Huns in Europe, were the largest ethnic group to the north of Han Chinese until the 5th century. The ethno-linguistic affiliation of the Hunnu is controversial among Yeniseian, Altaic, Uralic, and Indo-European. Ancient DNA analyses on the remains of the Hunnu people had shown some clues to this problem. Y chromosome haplogroups of Hunnu remains included Q-M242, N-Tat, C-M130, and R1a1. Recently, we analyzed three samples of Hunnu from Barköl, Xinjiang, China, and determined Q-M3 haplogroup. Therefore, most Y chromosomes of the Hunnu samples examined by multiple studies are belonging to the Q haplogroup. Q-M3 is mostly found in Yeniseian and American Indian peoples, suggesting that Hunnu should be in the Yeniseian family. The Y chromosome diversity is well associated with linguistic families in East Asia. According to the similarity in the Y chromosome profiles, there are four pairs of congenetic families, i.e., Austronesian and Tai-Kadai, Mon-Khmer and Hmong-Mien, Sino-Tibetan and Uralic, Yeniseian and Palaesiberian. Between 4,000-2,000 years before present, Tai-Kadai, Hmong-Mien, Sino-Tibetan, and Yeniseian languages transformed into toned analytic languages, becoming quite different from the rest four. Since Hunnu was in the Yeniseian family, all these four toned families were distributed in the inland of China during the transformations. There must be some social or biological factors induced the transformations at that time, which is worth doing more linguistic and genetic researches.Genomic scans for haplotypes of Denisova and Neanderthal ancestry in modern human populations.
F. L. Mendez, M. F. Hammer University of Arizona, Tucson, AZ., USA.
Evidence of archaic introgression into modern humans has accumulated in recent years. While most efforts to characterize the introgression process have relied on genome averages, only a small number of introgressive haplotypes have been shown to have an archaic origin after rejection of the alternative hypothesis of incomplete lineage sorting. Accurate identification of introgressive haplotypes is crucial both to characterize potentially functional consequences of archaic admixture and to quantify more precisely the genomic impact of archaic introgression. We perform two independent genomic scans for haplotypes of Denisova and of Neanderthal origin in a geographically diverse sample of complete genome sequences. These scans are based on the local sharing of polymorphisms and linkage disequilibrium, respectively. The analysis of concordance between the methods is then used to estimate the power and to compare demographic inference when performed using either all the data or just the genomic regions with no evidence of introgression. Moreover, we evaluate the extent to which Denisova haplotypes are observed in non-Melanesian populations, and investigate whether the presence of such haplotypes is better explained by their persistence in the population since introgression or by more recent gene flow from Melanesians.
Admixture Estimation in a Founder Population.
Y. Banda1 et al.
Admixture between previously diverged populations yields patterns of genetic variation that can aid in understanding migrations and natural selection. An understanding of individual admixture (IA) is also important when conducting association studies in admixed populations. However, genetic drift, in combination with shallow allele frequency differences between ancestral populations, can make admixture estimation by the usual methods challenging. We have, therefore, developed a simple but robust method for ancestry estimation using a linear model to estimate allele frequencies in the admixed individual or sample as a function of ancestral allele frequencies. The model works well because it allows for random fluctuation in the observed allele frequencies from the expected frequencies based on the admixture estimation. We present results involving 3,366 Ashkenazi Jews (AJ) who are part of the Kaiser Permanente Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort and genotyped at 674,000 SNPs, and compare them to the results of identical analyses for 2,768 GERA African Americans (AA). For the analysis of the AJ, we included surrogate Middle Eastern, Italian, French, Russian, and Caucasus subgroups to represent the ancestral populations. For the African Americans, we used surrogate Africans and Northern Europeans as ancestors. For the AJ, we estimated mean ancestral proportions of 0.380, 0.305, 0.113, 0.041 and 0.148 for Middle Eastern, Italian, French, Russian and Caucasus ancestry, respectively. For the African Americans, we obtained estimated means of 0.745 and 0.248 for African and European ancestry, respectively. We also noted considerably less variation in the individual admixture proportions for the AJ (s.d. = .02 to .05) compared to the AA (s.d.= .15), consistent with an older age of admixture for the former. From the linear model regression analysis on the entire population, we also obtain estimates of goodness of fit by r2. For the analysis of AJ, the r2 was 0.977; for the analysis of the AA, the r2 was 0.994, suggesting that genetic drift has played a more prominent role in determining the AJ allele frequencies. This was confirmed by examination of the distribution of differences for the observed versus predicted allele frequencies. As compared to the African Americans, the AJ differences were significantly larger, and presented some outliers which may have been the target of selection (e.g. in the HLA region on chromosome 6p).Admixture in the Pre-Columbian Caribbean.
J. C. Martinez-Cruzado et al.
The biological origin of the Caribbean aborigines that greeted Columbus is one of the most controversial issues regarding the population history of this region. Genome studies suggest an Equatorial-Tucanoan origin, consistent with the Arawakan language spoken by most natives of the region. However, the archaeological evidence suggests an early arrival from Mesoamerica, and their admixture with the more recent Arawak-speaking group stemming from the Amazon remains a possibility. The lineages comprehending most Puerto Rican samples belonging to haplogroups B1 and C1, which in turn encompass 44% of all Native American mtDNAs in the island, have an unambiguous South American origin. However, none of those belonging to haplogroup A2, encompassing 52% of all Native American mtDNAs, have been related to South America or any other continental region. To augment the scarce data from Mesoamerican countries other than Mexico, we present the complete mtDNA sequence of 6 Honduran samples belonging to distinct control region lineages in addition to 3 from the Dominican Republic and 3 from Puerto Rico. Interestingly, maximum likelihood phylogenetic reconstruction including 40 published haplogroup A2 sequence haplotypes from Mesoamerica, Central America and South America clusters 8 out of 10 Mesoamerican and Andean haplotypes in a deep rooted group, separate from, and excluding all Costa Rican, Panamian and Brasilian haplotypes, suggesting a relatively recent origin for Chibchan-Paezan and Amazonian groups. Furthermore, 4 of the 5 Greater Antillean A2 haplotypes are included in the deeply rooted Mesoamerican-Andean cluster. Moreover, the only Cuban haplotype in the literature and the remaining A2 haplotype from the Dominican Republic form even more deeply rooted private branches. Similarly, the only haplogroup C1d sample sequenced from the Dominican Republic forms a private branch with the deepest root in a maximum likelihood tree containing 19 additional C1d haplotypes from Mexico to Brasil plus the CRS. In conclusion, our preliminary results suggest that a substantial proportion of the Native American mtDNA lineages from the Greater Antilles do not share an Amazonian origin with the language their people spoke in 1492. Furthermore, the position of two Dominican lineages at the earliest split in both their respective trees suggests an early origin that could be explained by extensive lineage extinctions in Mesoamerica and the Andes or an origin in North America.The possible role of social selection in the distribution of the "Proto-Mongolian" haplotype in Kazakhs, Kyrgyz, Mongols and other Eurasian populations.
M. Zhabagin et al.
Social factors may be important contributors to reproductive success and determination of the selective survival of individuals. Therefore, social selection and other social factors are important for understanding population structure and its formation. The role of social selection on the distribution and formation of Y-chromosomal gene pool has been studied. There is a strong connection between social selection and birth rate of the descendants, whose fathers had achieved high social status during the expansion of the Mongol Empire and associated historical events. A total of 783 haplotypes, including 687 newly obtained and 96 retrieved from the literature were assigned to the haplogroup C3*-M217 (xM48) based on genotyping 17 Y-chromosomal STR markers. These haplotypes represent 11 populations of Eurasia: Kazakhs, Mongols, Kyrgyz, Telengits, Circassians, Balkar, Temirgoys, Karachai, Evenki, Kizhi and the Pashtuns. As the result, a major haplotype 13-16-25-15-16-18-14-10-22-11-10-11-13-10-21 (DYS389a-DYS389b-DYS390-DYS456-DYS19-DYS458-DYS437-DYS438-DYS448-GATA4-DYS391-DYS392-DYS393-DYS439-DYS635, N=94) was found to have 12.00% frequency within haplogroup C3*. This haplotype includes and extends the previously described “star-cluster” haplotype. Noteworthy, the frequency of this major haplotype within haplogroup C3* was 16.80% in Kazakhs, 10.13% in Mongols and 2.63% in Kirgiz who are not considered as direct descendants of Genghis Khan. 35.10% of the major haplotype was represented by Kazakh tribe Ashamayly-Kerey, 17.02% by the Khalkh Mongols and 7.44% by the Barguts. Therefore, we suppose this major ancestral haplotype to be the "proto-Mongolian haplotype", inherited by Genghis Khan and his descendants. It is important to mention that Temujin belongs to Kiyat-Borjigin tribe that in turn is a branch of the bigger Borjigin tribe, part of the Khalkh Mongols. Thus, Genghis Khan might be considered as a carrier rather than founder of the star-cluster haplotype. He and his descendants are the ones who contributed to a positive effect of social selection in the distribution of this haplotype. Other examples are the Barguts, who had Genghis Khan’s credit and were granted with a number of privileges, or the Kerey, based on the fact that Temujin had been brought up at the court of the Togrul Khan, belonging to the Kerey tribe.Y-chromosomal variation in native South Americans: bright dots on a gray canvas.
M. Nothnagel et al.
While human populations in Europe and Asia have often been reported to reveal a concordance between their extant genetic structure and the prevailing regional pattern of geography and language, such evidence is lacking for native South Americans. In the largest study of South American natives to date, we examined the relationship between Y-chromosomal genotype on the one hand, and male geographic origin and linguistic affiliation on the other. We observed virtually no structure for the extant Y-chromosomal genetic variation of South American males that could sensibly be related to their inter-tribal geographic and linguistic relationships, augmented by locally confined Y-STR autocorrelation. Analysis of repeatedly taken random subsamples from Europe adhering to the same sampling scheme excluded the possibility that this finding was due to our specific scheme. Furthermore, for the first time, we identified a distinct geographical cluster of Y-SNP lineages C-M217 (C3*) in South America, which are virtually absent from North and Central America, but occur at high frequency in Asia. Our data suggest a late introduction of C3* into South America no more than 6,000 years ago and low levels of migration between the ancestor populations of C3* carrier and non-carriers. Our findings are consistent with a rapid peopling of the continent, followed by long periods of isolation in small groups, and highlight the fact that a pronounced correlation between genetic and geographic/cultural structure can only be expected under very specific conditions.
The timing and history of Neandertal gene flow into modern humans.
S. Sankararaman et al.
Previous analyses of modern human variation in conjunction with the Neandertal genome have revealed that Neandertals contributed 1-4% of the genes of non-Africans with the time of last gene flow dated to 37,000-86,000 years before present. Nevertheless, many aspects of the joint demographic history of modern humans and Neandertals are unclear. We present multiple analyses that reveal details of the early history of modern humans since their dispersal out of Africa.
1.We analyze the difference between two allele frequency spectra in non-Africans: the spectrum conditioned on Neandertals carrying a derived allele while Denisovans carry the ancestral allele and the spectrum conditioned on Denisovans carrying a derived allele while Neandertals carry the ancestral allele. This difference spectrum allows us to study the drift since Neandertal gene flow under a simple model of neutral evolution in a panmictic population even when other details of the history before gene flow are unknown. Applying this procedure to the genotypes called in the 1000 Genomes Project data, we estimate the drift since admixture in Europeans of about 0.065 and about 0.105 in East Asians. These estimates are quite close to those in the European and East Asian populations since they diverged, implying that the Neandertal gene flow occurred close to the time of split of the ancestral populations.
2.Assuming only one Neandertal gene flow event in the common ancestry of Europeans and East Asians, we estimate the drift since gene flow in the common ancestral population. We show that an upper bound on this shared drift is 0.018. Because this is far less than the drift associated with the out-of-Africa bottleneck of all non-African populations, this shows that the Neandertal gene flow occurred after the out-of-Africa bottleneck.
3.We use the genetic drift shared between Europeans and East Asians, in conjunction with the observation of large regions deficient in Neandertal ancestry obtained from a map of Neandertal ancestry in Eurasians, to estimate the number of generations and effective population size in the period immediately after gene flow. These analyses suggest that only a few dozen Neandertals may have contributed to the majority of Neandertal ancestry in non-Africans today.
Genetic characterisation of two Greek population isolates.
K. Hatzikotoulas et al.
Genetic association studies of low-frequency and rare variants can be empowered by focusing on isolated populations. It is important to genetically characterize population isolates for substructure and recent admixture events as these may give rise to spurious associations. Under the auspices of the HELlenic Isolated Cohorts study (HELIC; www.helic.org) we have collected >3,000 samples from two isolated populations in Greece: the Pomak villages (HELIC Pomak), a set of religiously-isolated mountainous villages in the North of Greece; and Anogia and surrounding mountainous villages on Crete (HELIC MANOLIS). All samples have information on anthropometric, cardiometabolic, biochemical, haematological and diet-related traits. 1,500 individuals from each population isolate have been typed on the Illumina OmniExpress and Human Exome Beadchip platforms. Multidimensional scaling analysis with the 1000 Genomes Project data shows similarities of the two population isolates with Mediterranean populations such as the Tuscans from Italy and Iberians from Spain. We also observe evidence for structure within the isolates, with the Kentavros village in the Pomak strand demonstrating high levels of differentiation. To characterise the degree of isolatedness in these populations we estimated the proportion of individuals with at least one “surrogate parent” (using only the subset of samples with pairwise pi-hat<0 .2="" 707="" adolescents="" an="" and="" at="" attica="" compared="" comprises="" district.="" find="" for="" from="" genome="" greek="" in="" individuals="" is="" isolate="" least="" manolis="" of="" one="" outbred="" parent="" population="" proportion="" random="" regions="" study="" surrogate="" teenage="" that="" the="" this="" to="" unrelated="" we="" which="" with="">60% and in the Pomak isolate is >65% compared to ~1% in the outbred Greek population. Our results establish these populations as isolates and provide some insights into the genomic architecture of Greek populations, which have not been previously characterised.0>Efficient and Accurate Whole-Genome Human Phasing.
T. Blauwkamp et al.
High throughput DNA sequencing allows whole human genomes to be resequenced rapidly and inexpensively producing a comprehensive list of variants relative to the reference genome. However, short read sequencing technologies are limited in their ability to determine phasing information, thus resulting in heterozygous calls being represented as the average of the maternal and paternal chromosomes. Phasing information is of critical importance to personal medicine as it provides a better linkage between genotype and phenotype, permitting new advances in our understanding of compound heterozygote linked diseases, pharmacogenomics, HLA typing, and prenatal genome sequencing. Here, we describe a new sample prep method that enables whole human genome haplotyping at high accuracy using only 30Gb of sequence data. Genomic DNA was fragmented into ~10Kb fragments, end repaired, and ligated to adapters. Hundreds of aliquots with approximately 50MB of DNA in each were amplified, fragmented and converted into individual shotgun libraries. The pooled libraries were sequenced in a single lane of a HiSeq2500 at 2x100bp to generate ~30Gb of sequence. The resulting sequence information was analyzed to obtain a set of long blocks of ~10Kb, covering multiple heterozygous SNPs, allowing phasing of these SNPs relative to each other. An HMM-based phasing algorithm was used to compute the most likely phase and confidence intervals based on the observed coverage and sequencer quality scores. Phasing of those blocks relative to each other was done by another HMM-based algorithm which uses a panel of previously phased genomes. Comparing our results with phase information inferred by transmission from the parents, we found that over 98% of heterozygous SNPs were phased within long blocks (N50=500kb) at a switch error rate below 1 switch per megabase of phased sequence. We present results obtained from multiple cell lines and human samples. This new library prep method and data analysis pipeline enables whole human genome phasing with only 30Gb of raw sequence, which represents only ~30% more sequencing than current 30x baseline run for human sequencing. Compared to other published reports, this method is capable of phasing a greater fraction of SNPS with ~75% less sequencing. Coupling our higher percentage of SNPs phased with high accuracy and the lowest sequencing requirement, this new technology is the most affordable approach to generating completely phased whole human genomes.Inference of Natural Selection and Demographic History for African Pygmy Hunter-Gatherers.
P. H. Hsieh et al.
African Pygmies are hunter-gatherers primarily inhabiting the Central African rainforests, where they are exposed to high temperatures, high humidity, and a pathogen and parasite-enriched woody habitat. These factors undoubtedly influenced their evolutionary history as they adapted to this environment. Many Pygmy populations have historically been in socio-economic contact with neighboring Niger-Kordofanian speaking farmer populations, particularly since the agriculture expansion in sub-Saharan Africa that began five thousand years ago (kya). To look for the true signatures of adaptation to the rainforest habitat of pygmies we must control for this complex demographic history. We sequenced and combined 40x whole genome sequence data from 3 Baka pygmies from Cameroon, 4 Biaka pygmies from the Central African Republic, and 9 Niger-Kordofanian speaking Yoruba farmers from Nigeria. We used ?a?i, a model-based demographic inference tool, to infer the history of these populations. Our best-fit model suggests that the ancestors of the farmer and pygmy populations diverged 150 kya and remained isolated from each other until 40 kya. This divergence is more ancient than estimated by previous studies that included fewer loci, but is consistent with a PSMC analysis, a separate inference tool that uses different aspects of the genomic data than ?a?i. Interestingly, our analysis shows that models with bi-directional asymmetric gene flow between farmers and pygmies are statistically better supported than previously suggested models with a single wave of uni-directional migration from farmers to pygmies. To identify possible targets of positive selection, we conducted a genomic scan using complementary methods, including the frequency-spectrum based G2D test, the population differentiation based XP-CLR test, and the haplotype based iHS test. We performed 10,000 simulations based on the above best-fit demographic model in order to assign statistical significance to each reported target of natural selection. Our results reveal that genes involved in cell adhesion, cellular signaling, olfactory perception, and immunity were likely targeted by natural selection in the pygmies or their recent ancestors. Our analysis also shows that genes involved in the function of lipid binding are enriched in highly differentiated non-synonymous mutations, suggesting that this function may have acted differently on the Pygmies and farmers after their divergence from their common ancestor.Population demography and maternal history of Oceania.
A. T. Duggan et al.
We present a large-scale study of mtDNA diversity across Near and Remote Oceania with whole-genome mtDNA sequencing and a sample collection of more than 1,300 individuals spanning from the Bismarck Archipelago in the west to the Cook Islands in the east. As the location of at least two major migration events (initial colonization over 40,000 years ago, followed by an expansion of Austronesian-speaking migrants around 3,500 years ago), Oceania provides a unique opportunity to study the effects of population admixture. Our results support the idea of sex-biased admixture between the resident populations and the migrants of the Austronesian expansion. We find that haplogroups of putative Asian origin which are thought to have spread with the Austronesian expansion are found at high frequency in all but two populations and, in general, we see little evidence of distinction between Papuan and Austronesian speaking populations. Santa Cruz, which is part of the Solomon Islands but geographically distinct from the main island chain and considered part of Remote Oceania, has long been considered a linguistic oddity and is now accepted to represent a very deep branch in the Oceanic language family. We find that it is also a genetic outlier, with potential direct connections to the Bismarck Archipelago not evident in the main Solomon Islands chain. In this expanded dataset, we find additional evidence of instability and increased heteroplasmy at the ‘Polynesian motif’ position 16247, further confirming previous findings restricted to the Solomon Islands.
Reconstructing Austronesian population history.
M. Lipson et al.
Present-day populations that speak Austronesian languages are spread across half the globe, from Easter Island in the Pacific Ocean to Madagascar in the Indian Ocean. Evidence from linguistics and archaeology suggests that the "Austronesian expansion," a vast cultural and linguistic dispersal that began 4--5 thousand years ago, had its origin in Taiwan. However, genetic studies of Austronesian ancestry have been inconclusive, with some finding affinities with aboriginal Taiwanese, others advancing an autochthonous origin within Island Southeast Asia, and others proposing a model involving multiple waves of migration from Asia. Here, we analyze genome-wide data from a diverse set of 31 Austronesian-speaking and 25 other groups typed at 18,412 overlapping single nucleotide polymorphisms (SNPs) to trace the genetic origins of Austronesians. We use a recently developed computational tool for building phylogenetic models of population relationships incorporating the possibility of admixture, which allows us to infer ancestry proportions and sources of genetic material for 26 admixed Austronesian-speaking populations. Our analysis provides strong confirmation of widespread ancestry of Taiwanese origin: at least a quarter of the genetic material in all Austronesian-speaking populations that we studied---including all of the Asian ancestry in populations from eastern Indonesia and Oceania---is more closely related to aboriginal Taiwanese than to any populations we sampled from the mainland. Surprisingly, we also show that western Austronesian-speaking populations have inherited substantial proportions of their Asian ancestry from a source that falls within the variation of present-day Austro-Asiatic populations in Southeast Asia. No Austro-Asiatic languages are spoken in Island Southeast Asia today, although there are some linguistic and archaeological suggestions of an early connection between mainland and island populations. The most plausible explanation for these findings, in light of the historical evidence, is that western Island Southeast Asia was settled by Austronesian groups who had previously mixed with Austro-Asiatic speakers on the mainland.No significant differences in the accumulation of deleterious mutations across diverse human populations.
R. Do et al.
Differences in demographic history across populations are expected to cause differences in the accumulation of deleterious mutations because natural selection works less efficiently when population sizes are small. Surprisingly, however, the relative burden of deleterious mutations has never been directly measured across human populations on a per-haploid genome basis, despite the fact that this is what matters biologically in the absence of dominance and epistasis. Here we empirically measure the relative accumulation of deleterious mutations in 13 diverse populations (Yoruba, Mandenka, San, Mbuti, Dinka, Australian, French, Sardinian, Han, Dai, Mixe, Karitiana and Papuan) along with one archaic population (Denisova). All the present-day populations have statistically indistinguishable accumulations of coding mutations. We highlight two examples. First, we find no evidence for a lower mutational load in West Africans than in Europeans despite the approximately 30% higher genetic diversity in West Africans: the accumulation of nonsynonymous mutations in West Africans is 1.01±0.02 times that in Europeans, and for “probably damaging” mutations, the ratio is 1.03±0.04. Second, we find no evidence for a lower mutational load in populations that have experienced agriculture-related expansions over the last 10,000 years and those that have not: the ratio in Chinese to Karitiana hunter gatherers from Brazil is 0.99±0.07. We determined that these null results are not an artifact of insensitivity of our method to differences in demographic history. As a positive control, we also analyzed archaic Denisovans who are known to have had a small population size for hundreds of thousands of years since separation from modern humans. We show that the Denisovan lineage has accumulated “probably damaging” mutations 1.33±0.06 times more rapidly than modern humans since they split. These analyses are important because of the new constraints they place on the distribution of selection coefficients in humans. Given the currently estimated demographic histories of West Africans and Europeans, combined with the fact that we do not detect a lower accumulation of deleterious mutations in West Africans than Europeans, we can conclude that only a small proportion of nonsynonymous mutations have selection coefficients in the range s=-0.01 to -0.001, which is the range of selection coefficients which would be expected to show a lower accumulation in West Africans than in Africans.Deep coverage Bedouin genomes reveal Bedouin haplotypes shared among worldwide populations in the 1000 Genomes Project.
J. L. Rodriguez-Flores et al.
The 1000 Genomes Project (1000G) has sampled and sequenced over 2500 genomes that are representative of the genetic diversity in populations worldwide. The Arabian Peninsula has not been previously included in 1000G, hence the connections between genetic variation in the indigenous Bedouin people and worldwide populations is unknown. We have sampled genomes from Bedouin individuals in the nation of Qatar as a window into the genetic variation in this understudied region. Our goal was to use this sample to assess the hypothesis that there is detectable shared ancestry between Bedouin and Southern European populations resulting from the history of empires that spanned both the Mediterranean and Arabian regions and the hypothesis that there is shared ancestry between Bedouin and contemporary Latin American populations, since the majority of European settlers in Latin America from the past half millennia are primarily from Southern European countries. We selected 60 Qataris with over 95% Bedouin ancestry and at least 3 generations of ancestry in Qatar for deep coverage genome sequencing. Genomes were sequenced by the Illumina Genome Network using TruSeq DNA PCR-free sample preparation, generating over 120 gigabases of paired-end 100 base pair reads per genome on a HiSeq 2500, yielding over 30x depth and genotypes for >96% of the genome using both the ELAND/CASAVA and BWA/GATK pipelines. Using these genotypes, we inferred haplotypes using SHAPEIT for Bedouin Qataris and for 1000G populations on a set of sites polymorphic in both 1000G and Bedouins. We used admixture analysis to assess shared ancestry between our Bedouin sample and 1000G populations using the ancestry deconvolution method SUPPORTMIX. Given the lack of appropriate ancestral populations, we conducted a leave-one-out approach, where for each population (1000G + Bedouin = n), we removed the population and used the remaining n-1 populations as an ancestral reference panel. Using this approach, we observed up to 15% Bedouin ancestry in European, South Asian, and American populations. Likewise, we observed ancestry from Europe, South Asia, and America in the Bedouin. For individuals from the Americas, the analysis identified a considerable number of segments shared with Bedouins previously classified as European ancestry.Using a haplotype-based model to infer Native American colonization history.
C. Lewis et al.
We apply a powerful haplotype-based model (described in Lawson et al. 2012) to infer the population history of 410 individuals from ~50 Native American groups, using data interrogated at >470,000 genome-wide autosomal Single-Nucleotide-Polymorphisms (SNPs). The model matches haplotype patterns among individuals' chromosomes to infer which individuals share recent common ancestry at each location of the genome, an approach that has previously been demonstrated to increase power substantially over widely-used alternative approaches that consider SNPs independently. We apply this methodology to 1861 samples described in Reich et al. (2012), incorporating 263 additional samples from 32 relevant world-wide regions collated from other publicly available resources and currently unavailable data. We utilize these methodology and data in two ways. First, we infer intermixing (i.e. "admixture") events among different Native American groups by identifying the groups that share the most haplotype segments. Using additional unpublished techniques, we determine the dates of these intermixing events, the proportions of DNA contributed, and the precise genetic make-up of the groups involved. These unique characteristics set this methodology apart from all presently available software, allowing us to place these mixing events into a clear historical context and thus identify the factors (e.g. the rise or fall of various Native American empires) that have contributed most to the genetic architecture of present-day Native American groups. Second, we match DNA patterns from each Native American group to a set of over 30 populations from Siberia and East Asia, describing each Native American group as a mixture of DNA from these regions. This enables us to shed light on the widely debated number of distinct migrations into the Americas during the initial colonization across the Bering Strait, comparing our results to previous inference from the literature. Our application demonstrates the power gained by using rich haplotype information relative to approaches that ignore this information.
Using Ancient Genomes to Detect Positive Selection on the Human Lineage.
K. Prüfer et al.
At least two distinct groups of archaic hominins inhabited Eurasia before the arrival of modern humans: Neandertals and Denisovans. The analysis of the genomes of these archaic humans revealed that they are more closely related to one another than they are to modern humans. However, since modern and archaic humans are so closely related, only about 10% of the archaic DNA sequences fall outside the present-day human variation whereas for 90% of the genome, Neandertal or Denisova DNA sequences are more closely related to some humans than to others. The fact that the archaic sequence often falls within the diversity of modern humans can be used to detect selective sweeps that affected all modern humans after their split from archaic humans since such sweeps will result in genomic regions where both the Neandertal and Denisova genomes fall outside the modern human variation. The genetic lengths of such external regions are proportional to the strength of selection, since stronger selection will lead to faster sweeps allowing less time for recombination to decrease their size. We have implemented a test for such external regions as a hidden Markov model. At each polymorphic position the model emits ancestral or derived based on whether the tested archaic genome carries the ancestral or derived variant of SNPs observed in present-day humans. The model was applied to 185 African genomes from the 1000 genomes phase 1 data. We identified thousands of external regions using the Neandertal and Denisova genomes, separately. Approximately one third of the regions are overlapping between the two genomes. These regions are significantly longer than regions only identified in only one of the archaic genomes. Based on this excess of overlap for long regions, we devise a measure to identify a set of regions that are candidates for selective sweeps on the human lineage since the split from Neandertal and Denisova.
Pulling out the 1%: Whole-Genome In-Solution (WISC) capture for the targeted enrichment of ancient DNA sequencing libraries.
C. D. Bustamante et al.
The very low levels of endogenous DNA remaining in most ancient specimens has precluded the shotgun sequencing of many interesting samples due to cost. For example, ancient DNA (aDNA) libraries derived from bones and teeth often contain <1 b="" by="" capacity="" dna.="" dna="" endogenous="" environmental="" is="" majority="" meaning="" of="" sequencing="" taken="" that="" the="" up=""> We will present a method for the targeted enrichment of the endogenous component of human aDNA sequencing libraries. Using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to significantly enrich for human-derived DNA fragments. This approach, which we call whole-genome in-solution capture (WISC), allows us to obtain genome-wide ancestral information from ancient samples with very low endogenous DNA contents. We demonstrate WISC on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased dramatically, with up to 59% of reads mapped to human and folds enrichment ranging from 5X to 139X. Furthermore, we maintained coverage of the majority of fragments present in the pre-capture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062-147,243) for the post-capture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217-73,266) for the pre-capture libraries, increasing resolution in population genetic analyses. We will also present the results of performing WISC on other aDNA libraries from both archaic human and non-human samples, including ancient domestic dog samples. Our capture approach is flexible and cost-effective, allowing researchers to access aDNA from many specimens that were previously unsuitable for sequencing. Furthermore, this method has applications in other contexts, such as the enrichment of target human DNA in forensic samples.1>
Insights into population history from a high coverage Neandertal genome.
D. Reich1, for.the. Neandertal Genome Consortium2
We have sequenced to about 50-fold coverage a genome sequence from about 40 mg of a bone found in Denisova Cave in Southern Siberia. The genome of this female is much more closely related to the low-coverage Neandertal genomes from Croatia, Spain, Germany and the Caucasus than to the genome of archaic Denisovans, a sister group of Neandertals, and provides unambiguous evidence that both Neandertals and Denisovans inhabited the Altai Mountains in Siberia. The high-coverage Neandertal genome, combined with our earlier sequencing of a high quality Denisova genome, allows novel insights about the population history of archaic humans:
•We document recent inbreeding in this Altai Neandertal. The inbreeding coefficient of about 1/8 corresponds to about the homozygosity that would be expected from a mating of half siblings.
•The Altai Neandertal genome shares almost seven percent more derived alleles with present-day Africans than does the Denisova genome. This means that the Denisovans derived a proportion of their ancestry from a very archaic human lineage, and the amount of this ancestry they inherit is larger than in Neandertals.
• The Denisovan genome is affected by major recent gene flow from an Altai-related Neandertal.
• To further characterize the variation among Neandertals we sequenced the genome of a Neandertal from the Caucasus to about 0.5-fold coverage. Comparisons to present-day genomes show that the Neandertals who contributed genes to present-day non-Africans were more closely related to this Caucasian Neandertal than to the Neandertals we sequenced from the Altai.
•We built a map of Neandertal ancestry in modern humans, using data from all non-Africans in the 1000 Genomes Project. We show that the average Neandertal ancestry on chromosome X of present-day non-Africans is about a fifth of the genome average. It is known that hybrid incompatibility loci concentrate on chromosome X. Thus, this observation is consistent with a model of hybrid incompatibility in which Neandertal variants that introgressed into modern humans were rapidly selected away due to epistatic interactions with the modern human genetic background.
Inferring complex demographies from PSMC coalescent rate estimates: African substructure and the Out-of-Africa event.
S. Gopalakrishnan et al.
S. Gopalakrishnan et al.
Human population history is an intriguing and complex story with many events like population growth, bottlenecks, time-dependent/non-homogeneous migration, population splits and mixtures. Estimating complete demographies with population sizes, rates of gene flow and population split times has proven to be a challenging endeavor. We propose a framework for jointly estimating the demography parameters, especially gene-flow rates and split times, for a large number of populations. We use coalescent rate estimates obtained from Pairwise Sequentially Markovian Coalescent (PSMC) as the starting point for our analysis. Since PSMC works on only two chromosomes at a time, we apply PSMC to all pairs of individuals to obtain the pairwise coalescent rates for lineages from every pair of sampled populations. Using a mathematical model for calculating coalescent probabilites given population parameters, we estimate demography using the parameters that best fit the observed coalesecent rates.
In this study, we focus on two aspects of African population genetics, 1. the nature of population structure in Africa going back in time and 2. the timing of the Out-of-Africa event. To address these questions, we assembled a dataset with whole genome sequences from 162 individuals using both in-house sequencing and publicly available sources. These samples span 22 populations worldwide. These include eleven African populations which we use to dissect the population substructure in Africa. In addition, we also have 2 Middle Eastern, 5 European and 4 East/Central Asian populations which inform the population split time estimates for the Out-of-Africa event and the European-Asian split.
We find extensive population structure in Africa extending back to before the Out-of-Africa event. The Ethiopian populations, Amhara and Oromo, show evidence of mixing beyond 15 kya. The Maasai and Luhye merge with the Ethiopian populations to form a panmictic East African population ~40kya. We find evidence for extensive mixing between east and west African populations before 50kya. Among the pygmy populations, we see recent gene flow between the Batwa and Mbuti. All African populations except the San merge into a single population around 110 kya. The San exchange migrants with the other African populations beginning ~120 kya. We estimate the Out-of-Africa event to have occurred ~75kya and the European-Asian split to ~25kya.
Out of Africa, which way?
L. Pagani et al.
E. Elhaik et al.
L. Pagani et al.
While the African origin of all modern human populations is well-established, the dynamics of the diaspora that led anatomically modern humans to colonize the lands outside Africa are still under debate. Understanding the demographic parameters as well as the route (or routes) followed by the ancestors of all non-Africans could help to refine our understanding of the selection processes that occurred subsequently, as well as shedding light on a landmark process in our evolutionary history. Of the three possible gateways out of Africa (via Morocco across the Gibraltar strait, via Egypt through the Suez isthmus or via the Horn of Africa across Bab el Mandeb strait) only the latter two are supported by paleoclimatic and archaeological evidence. Furthermore, recent studies (Pagani et al. 2012) showed that, although the modern Ethiopian populations might be good candidates for the descendants of the source population of such a migration, modern Egyptians could be an even better candidate. Unfortunately, however, only a few Egyptian samples have been genotyped and, as yet, none have been fully sequenced. Here, we have generated 125 Ethiopian and 100 Egyptian whole genome sequences (Illumina HiSeq, 8x average depth). The genomes were partitioned using PCAdmix (Brisbin et al. 2012) to account for the confounding effects of recent introgression from neighboring non-African populations. To explore the genetic legacy of migration routes out of Africa, and in particular to test whether the observed genetic data support one route over another, the African components of Egyptians and Ethiopians were then compared to a panel of available non-African populations from the 1000 Genomes Project (1000 Genomes Project Consortium, 2012). The high resolution provided by whole genome sequencing allows us to shed new light on the paths followed by our ancestors as they left Africa, as well as refining the current knowledge of the demographic history of the populations analyzed.
The Saudi Arabian Genome Reveals a Two Step Out-of-Africa Migration.
J. J. Farrell et al.
Here we present the first high-coverage whole genome sequences from a Middle Eastern population consisting of 14 Eastern Province Saudi Arabians. Genomes from this region are of interest to further answer questions regarding “Out-of-Africa” human migration. Applying a pairwise sequentially Markovian coalescent model (PSMC), we inferred the history of population sizes between 10,000 years and 1,000,000 years before present (YBP) for the Saudi genomes and an additional 11 high-coverage whole genome sequences from Africa, Asia and Europe.Geographic Population Structure (GPS) of worldwide human populations infers biogeographical origin down to home village
The model estimated the initial separation from Africans at approximately 110,000 YBP. This intermediate population then underwent a long period of decreasing population size culminating in a bottleneck 50,000 YBP followed by an expansion into Asia and Europe. The split and subsequent bottleneck were thus two distinct events separated by a long intermediate period of genetic drift in the Middle East. The two most frequent mitochondria haplogroups (30% each) were the Middle Eastern U7a and the African L. The presence of the L haplogroup common in Africa was unexpected given the clustering of the Saudis with Europeans in the phylogenetic tree and suggests some recent African admixture. To examine this further, we performed formal tests for a history of admixture and found no evidence of African admixture in the Saudi after the split. Taken together, these analyses suggest that the L3 haplogroup found in the Saudi were present before the bottleneck 50,000 YBP. Given the TMRCA estimates for the L3 haplogroup of approximately 70,000 YBP and the timing of the Out-of-Africa split, these analyses suggest that L3 haplogroup arose in the Middle East with a subsequent back migration and expansion into Africa over the Horn-of-Africa during the lower sea levels found during the glacial period bottleneck.
These results are consistent with the hypothesis that modern humans populated the Middle East before a split 110,000 YBP, underwent genetic drift for 60,000 years before expanding to Asia and Europe as well as back-migration into Africa. Examination of genetic variants discovered by Saudi whole genome sequencing in ancestral African populations and European/Asian populations will contribute to the understanding human migration patterns and the origin of genetic variation in modern humans.
E. Elhaik et al.
The search for a method that utilizes biological information to predict human’s place of origin has occupied scientists for millennia. Modern biogeography methods are accurate to 700 km in Europe but are highly inaccurate elsewhere, particularly in Southeast Asia and Oceania. The accuracy of these methods is bound by the choice of genotyping arrays, the size and quality of the reference dataset, and principal component (PC)-based algorithms. To overcome the first two obstacles, we designed GenoChip, a dedicated genotyping array for genetic anthropology with an unprecedented number of ~12,000 Y-chromosomal and ~3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs carefully chosen to study ancestry without any known health, medical, or phenotypic relevance. We also 615 individuals from 54 worldwide populations collected as part of the Genographic Project and the 1000 Genomes Project. To overcome the last impediment, we developed an admixture-based Geographic Population Structure (GPS) method that infers the biogeography of worldwide individuals down to their village of origin. GPS’s accuracy was demonstrated on three data sets: worldwide populations, Southeast Asians and Oceanians, and Sardinians (Italy) using 40,000-130,000 GenoChip markers. GPS correctly placed 80%; of worldwide individuals within their country of origin with an accuracy of 87%; for Asians and Oceanians. Applied to over 200 Sardinians villagers of both sexes, GPS placed a quarter of them within their villages and most of the remaining within 50 km of their villages, allowing us to identify the demographic processes that shaped the Sardinian society. These findings are significantly more accurate than PCA-based approaches. We further demonstrate two GPS applications in tracing the poorly understood biogeographical origin of the Druze and North American (CEU) populations. Our findings demonstrate the potential of the GenoChip array for genetic anthropology. Moreover, the accuracy and power of GPS underscore the promise of admixture-based methods to biogeography and has important ramifications for genetic ancestry testing, forensic and medical sciences, and genetic privacy.
July 01, 2013
Complete mtDNA from Filipino groups
European Journal of Human Genetics, (12 June 2013) | doi:10.1038/ejhg.2013.122
Complete mtDNA genomes of Filipino ethnolinguistic groups: a melting pot of recent and ancient lineages in the Asia-Pacific region
Frederick Delfin et al.
The Philippines is a strategic point in the Asia-Pacific region for the study of human diversity, history and origins, as it is a cross-road for human migrations and consequently exhibits enormous ethnolinguistic diversity. Following on a previous in-depth study of Y-chromosome variation, here we provide new insights into the maternal genetic history of Filipino ethnolinguistic groups by surveying complete mitochondrial DNA (mtDNA) genomes from a total of 14 groups (11 groups in this study and 3 groups previously published) including previously published mtDNA hypervariable segment (HVS) data from Filipino regional center groups. Comparison of HVS data indicate genetic differences between ethnolinguistic and regional center groups. The complete mtDNA genomes of 14 ethnolinguistic groups reveal genetic aspects consistent with the Y-chromosome, namely: diversity and heterogeneity of groups, no support for a simple dichotomy between Negrito and non-Negrito groups, and different genetic affinities with Asia-Pacific groups that are both ancient and recent. Although some mtDNA haplogroups can be associated with the Austronesian expansion, there are others that associate with South Asia, Near Oceania and Australia that are consistent with a southern migration route for ethnolinguistic group ancestors into the Asia-Pacific, with a timeline that overlaps with the initial colonization of the Asia-Pacific region, the initial colonization of the Philippines and a possible separate post-colonization migration into the Philippine archipelago.
Link
Complete mtDNA genomes of Filipino ethnolinguistic groups: a melting pot of recent and ancient lineages in the Asia-Pacific region
Frederick Delfin et al.
The Philippines is a strategic point in the Asia-Pacific region for the study of human diversity, history and origins, as it is a cross-road for human migrations and consequently exhibits enormous ethnolinguistic diversity. Following on a previous in-depth study of Y-chromosome variation, here we provide new insights into the maternal genetic history of Filipino ethnolinguistic groups by surveying complete mitochondrial DNA (mtDNA) genomes from a total of 14 groups (11 groups in this study and 3 groups previously published) including previously published mtDNA hypervariable segment (HVS) data from Filipino regional center groups. Comparison of HVS data indicate genetic differences between ethnolinguistic and regional center groups. The complete mtDNA genomes of 14 ethnolinguistic groups reveal genetic aspects consistent with the Y-chromosome, namely: diversity and heterogeneity of groups, no support for a simple dichotomy between Negrito and non-Negrito groups, and different genetic affinities with Asia-Pacific groups that are both ancient and recent. Although some mtDNA haplogroups can be associated with the Austronesian expansion, there are others that associate with South Asia, Near Oceania and Australia that are consistent with a southern migration route for ethnolinguistic group ancestors into the Asia-Pacific, with a timeline that overlaps with the initial colonization of the Asia-Pacific region, the initial colonization of the Philippines and a possible separate post-colonization migration into the Philippine archipelago.
Link
April 04, 2013
The role of Taiwan in the Austronesian expansion
Of interest:
Am J Phys Anthropol Volume 150, Issue 4, pages 551–564, April 2013
Ascertaining the role of Taiwan as a source for the Austronesian expansion
Sheyla Mirabal et al.
Taiwanese aborigines have been deemed the ancestors of Austronesian speakers which are currently distributed throughout two-thirds of the globe. As such, understanding their genetic distribution and diversity as well as their relationship to mainland Asian groups is important to consolidating the numerous models that have been proposed to explain the dispersal of Austronesian speaking peoples into Oceania. To better understand the role played by the aboriginal Taiwanese in this diaspora, we have analyzed a total of 451 individuals belonging to nine of the tribes currently residing in Taiwan, namely the Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, and the Yami from Orchid Island off the coast of Taiwan across 15 autosomal short tandem repeat loci. In addition, we have compared the genetic profiles of these tribes to populations from mainland China as well as to collections at key points throughout the Austronesian domain. While our results suggest that Daic populations from Southern China are the likely forefathers of the Taiwanese aborigines, populations within Taiwan show a greater genetic impact on groups at the extremes of the current domain than populations from Indonesia, Mainland, or Southeast Asia lending support to the “Out of Taiwan” hypothesis. We have also observed that specific Taiwanese aboriginal groups (Paiwan, Puyuma, and Saisiyat), and not all tribal populations, have highly influenced genetic distributions of Austronesian populations in the pacific and Madagascar suggesting either an asymmetric migration out of Taiwan or the loss of certain genetic signatures in some of the Taiwanese tribes due to endogamy, isolation, and/or drift.
Link
It is of interest that only two of the Pacific populations,
NZA and NZEP, both from New Zealand, are
impacted by mainland Chinese groups in the admixture
proportions (Table 4). The fact that the NZA population
is of Asian descent is the likely explanation for its connection.
In contrast, all the Austronesian Pacific populations
studied (as well as Madagascar), exhibit
widespread influences from Taiwanese aborigines, these
influences are even greater, in most instances, than the
impact from populations more geographically proximal
(for example Indonesia). Notably, the three Taiwanese
aboriginal groups that seem largely responsible for the
aforementioned effects (Paiwan, Puyuma and Saisiyat)
have been largely understudied. The Ami, which not
only is the largest tribe (population wise) within Taiwan
but the most represented in the literature, only affects
the New Zealand groups and Madagascar but not Samoa
and Tonga (Table 4), indicating that it is essential to
include a complete survey of these tribal groups when
ascertaining phylogenetic relationships.
Am J Phys Anthropol Volume 150, Issue 4, pages 551–564, April 2013
Ascertaining the role of Taiwan as a source for the Austronesian expansion
Sheyla Mirabal et al.
Taiwanese aborigines have been deemed the ancestors of Austronesian speakers which are currently distributed throughout two-thirds of the globe. As such, understanding their genetic distribution and diversity as well as their relationship to mainland Asian groups is important to consolidating the numerous models that have been proposed to explain the dispersal of Austronesian speaking peoples into Oceania. To better understand the role played by the aboriginal Taiwanese in this diaspora, we have analyzed a total of 451 individuals belonging to nine of the tribes currently residing in Taiwan, namely the Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, and the Yami from Orchid Island off the coast of Taiwan across 15 autosomal short tandem repeat loci. In addition, we have compared the genetic profiles of these tribes to populations from mainland China as well as to collections at key points throughout the Austronesian domain. While our results suggest that Daic populations from Southern China are the likely forefathers of the Taiwanese aborigines, populations within Taiwan show a greater genetic impact on groups at the extremes of the current domain than populations from Indonesia, Mainland, or Southeast Asia lending support to the “Out of Taiwan” hypothesis. We have also observed that specific Taiwanese aboriginal groups (Paiwan, Puyuma, and Saisiyat), and not all tribal populations, have highly influenced genetic distributions of Austronesian populations in the pacific and Madagascar suggesting either an asymmetric migration out of Taiwan or the loss of certain genetic signatures in some of the Taiwanese tribes due to endogamy, isolation, and/or drift.
Link
February 12, 2013
Automated reconstruction of proto-languages
PNAS doi: 10.1073/pnas.1204678110
Automated reconstruction of ancient languages using probabilistic models of sound change
Alexandre Bouchard-Côté et al.
One of the oldest problems in linguistics is reconstructing the words that appeared in the protolanguages from which modern languages evolved. Identifying the forms of these ancient languages makes it possible to evaluate proposals about the nature of language change and to draw inferences about human history. Protolanguages are typically reconstructed using a painstaking manual process known as the comparative method. We present a family of probabilistic models of sound change as well as algorithms for performing inference in these models. The resulting system automatically and accurately reconstructs protolanguages from modern languages. We apply this system to 637 Austronesian languages, providing an accurate, large-scale automatic reconstruction of a set of protolanguages. Over 85% of the system’s reconstructions are within one character of the manual reconstruction provided by a linguist specializing in Austronesian languages. Being able to automatically reconstruct large numbers of languages provides a useful way to quantitatively explore hypotheses about the factors determining which sounds in a language are likely to change over time. We demonstrate this by showing that the reconstructed Austronesian protolanguages provide compelling support for a hypothesis about the relationship between the function of a sound and its probability of changing that was first proposed in 1955.
Link
Automated reconstruction of ancient languages using probabilistic models of sound change
Alexandre Bouchard-Côté et al.
One of the oldest problems in linguistics is reconstructing the words that appeared in the protolanguages from which modern languages evolved. Identifying the forms of these ancient languages makes it possible to evaluate proposals about the nature of language change and to draw inferences about human history. Protolanguages are typically reconstructed using a painstaking manual process known as the comparative method. We present a family of probabilistic models of sound change as well as algorithms for performing inference in these models. The resulting system automatically and accurately reconstructs protolanguages from modern languages. We apply this system to 637 Austronesian languages, providing an accurate, large-scale automatic reconstruction of a set of protolanguages. Over 85% of the system’s reconstructions are within one character of the manual reconstruction provided by a linguist specializing in Austronesian languages. Being able to automatically reconstruct large numbers of languages provides a useful way to quantitatively explore hypotheses about the factors determining which sounds in a language are likely to change over time. We demonstrate this by showing that the reconstructed Austronesian protolanguages provide compelling support for a hypothesis about the relationship between the function of a sound and its probability of changing that was first proposed in 1955.
Link
January 26, 2013
Indonesian mega-study (Tumonggor et al. 2013)
A new comprehensive survey of Y chromosome/mtDNA variation in Indonesia has just appeared online. From the paper:
Of the lineages found in Indonesia, the deepest ancestry appears to be associated with mtDNA haplogroups P (54+/-16ky) and Q (38+/-9ky), both of which appear to have clear "Australo-Melanesian" associations. Of the B subclades that are lately of interest due to the publication of Tianyuan ancient DNA, the oldest one appears to be B4a (33+/-13ky).
One of the major puzzles in prehistory is the co-occurrence of mtDNA macro-haplogroups M and N in the eastern portion of Eurasia vs. the dominance of N in the western part thereof. The peninsulas of Arabia and India probably hold a key to this riddle, although in both cases the situation is obscured by subsequent events: in Arabia, there has probably been substantial population turnover during its "desert" phases, while in India there has been recent admixture between the aboriginal population and West Eurasian-derived inhabitants.
Journal of Human Genetics , (24 January 2013) | doi:10.1038/jhg.2012.154
The Indonesian archipelago: an ancient genetic highway linking Asia and the Pacific
Meryanne K Tumonggor et al.
Indonesia, an island nation linking mainland Asia with the Pacific world, hosts a wide range of linguistic, ethnic and genetic diversity. Despite the complexity of this cultural environment, genetic studies in Indonesia remain surprisingly sparse. Here, we report mitochondrial DNA (mtDNA) and associated Y-chromosome diversity for the largest cohort of Indonesians examined to date—2740 individuals from 70 communities spanning 12 islands across the breadth of the Indonesian archipelago. We reconstruct 50 000 years of population movements, from mitochondrial lineages reflecting the very earliest settlers in island southeast Asia, to Neolithic population dispersals. Historic contacts from Chinese, Indians, Arabs and Europeans comprise a noticeable fraction of Y-chromosome variation, but are not reflected in the maternally inherited mtDNA. While this historic immigration favored men, patterns of genetic diversity show that women moved more widely in earlier times. However, measures of population differentiation signal that Indonesian communities are trending away from the matri- or ambilocality of early Austronesian societies toward the more common practice of patrilocal residence today. Such sex-specific dispersal patterns remain even after correcting for the different mutation rates of mtDNA and the Y chromosome. This detailed palimpsest of Indonesian genetic diversity is a direct outcome of the region’s complex history of immigration, transitory migrants and populations that have endured in situ since the region’s first settlement.
Link
The first stage of Indonesian prehistory represents the archipelago’s initial settlement as part of the African dispersal ~50 kya. The geography of the region was then markedly different from today. Sea levels were much lower, most modern islands had merged into larger landmasses, and the westernmost parts of Indonesia were physically contiguous with mainland Asia. This first stage is recorded by deep mtDNA lineages (M17a, M73, M47, N21, N22, R21, R22 and R23), which trace back to the main branching of macrohaplogroups M and N, and have a spotty distribution across both mainland and island southeast Asia today.and:
The second stage reflects recurrent colonization events from mainland Asia throughout the later Paleolithic. Many haplogroups (B4a, B4b, B4c, B4c1b3, B5a, B5b, B5b1, D and E) show origin dates of 10-40 kya (Supplementary Table 6) 25, 63 and are distributed across a wide range of mainland and island southeast Asian populations.and:
The third stage represents Neolithic movements into and around island southeast Asia. Some of these may involve population dispersals from (and perhaps to) Taiwan, while others reflect movements between Indonesian island groups. Representative haplogroups include M7b3, E1a1a, M7c3c and Y2. Autosomal data strongly supports large demic movements of Asian populations into eastern Indonesia from around 4 kya 67.and, finally:
The fourth stage reflects historic movements into Indonesia, largely involving trade and the associated spread of major religions from India, Arabia and China 71. Although found at relatively low frequency today, Y chromosome lineages representing these movements occur across Indonesia 20, notably in the west, such as the Hindu dominated island of BaliIt would be useful to study Indonesian haplogroups as a means of testing the hypothesis of Indian settlement in Australia, since it is difficult to see any such settlement that would not have passed through the Indonesian archipelago.
Of the lineages found in Indonesia, the deepest ancestry appears to be associated with mtDNA haplogroups P (54+/-16ky) and Q (38+/-9ky), both of which appear to have clear "Australo-Melanesian" associations. Of the B subclades that are lately of interest due to the publication of Tianyuan ancient DNA, the oldest one appears to be B4a (33+/-13ky).
One of the major puzzles in prehistory is the co-occurrence of mtDNA macro-haplogroups M and N in the eastern portion of Eurasia vs. the dominance of N in the western part thereof. The peninsulas of Arabia and India probably hold a key to this riddle, although in both cases the situation is obscured by subsequent events: in Arabia, there has probably been substantial population turnover during its "desert" phases, while in India there has been recent admixture between the aboriginal population and West Eurasian-derived inhabitants.
Journal of Human Genetics , (24 January 2013) | doi:10.1038/jhg.2012.154
The Indonesian archipelago: an ancient genetic highway linking Asia and the Pacific
Meryanne K Tumonggor et al.
Indonesia, an island nation linking mainland Asia with the Pacific world, hosts a wide range of linguistic, ethnic and genetic diversity. Despite the complexity of this cultural environment, genetic studies in Indonesia remain surprisingly sparse. Here, we report mitochondrial DNA (mtDNA) and associated Y-chromosome diversity for the largest cohort of Indonesians examined to date—2740 individuals from 70 communities spanning 12 islands across the breadth of the Indonesian archipelago. We reconstruct 50 000 years of population movements, from mitochondrial lineages reflecting the very earliest settlers in island southeast Asia, to Neolithic population dispersals. Historic contacts from Chinese, Indians, Arabs and Europeans comprise a noticeable fraction of Y-chromosome variation, but are not reflected in the maternally inherited mtDNA. While this historic immigration favored men, patterns of genetic diversity show that women moved more widely in earlier times. However, measures of population differentiation signal that Indonesian communities are trending away from the matri- or ambilocality of early Austronesian societies toward the more common practice of patrilocal residence today. Such sex-specific dispersal patterns remain even after correcting for the different mutation rates of mtDNA and the Y chromosome. This detailed palimpsest of Indonesian genetic diversity is a direct outcome of the region’s complex history of immigration, transitory migrants and populations that have endured in situ since the region’s first settlement.
Link
November 16, 2012
First Polynesian settlement: 2838±8 BP
PLoS ONE 7(11): e48769. doi:10.1371/journal.pone.0048769
High Precision U/Th Dating of First Polynesian Settlement
David Burley et al.
Previous studies document Nukuleka in the Kingdom of Tonga as a founder colony for first settlement of Polynesia by Lapita peoples. A limited number of radiocarbon dates are one line of evidence supporting this claim, but they cannot precisely establish when this event occurred, nor can they afford a detailed chronology for sequent occupation. High precision U/Th dates of Acropora coral files (abraders) from Nukuleka give unprecedented resolution, identifying the founder event by 2838±8 BP and documenting site development over the ensuing 250 years. The potential for dating error due to post depositional diagenetic alteration of ancient corals at Nukuleka also is addressed through sample preparation protocols and paired dates on spatially separated samples for individual specimens. Acropora coral files are widely distributed in Lapita sites across Oceania. U/Th dating of these artifacts provides unparalleled opportunities for greater precision and insight into the speed and timing of this final chapter in human settlement of the globe.
Link
High Precision U/Th Dating of First Polynesian Settlement
David Burley et al.
Previous studies document Nukuleka in the Kingdom of Tonga as a founder colony for first settlement of Polynesia by Lapita peoples. A limited number of radiocarbon dates are one line of evidence supporting this claim, but they cannot precisely establish when this event occurred, nor can they afford a detailed chronology for sequent occupation. High precision U/Th dates of Acropora coral files (abraders) from Nukuleka give unprecedented resolution, identifying the founder event by 2838±8 BP and documenting site development over the ensuing 250 years. The potential for dating error due to post depositional diagenetic alteration of ancient corals at Nukuleka also is addressed through sample preparation protocols and paired dates on spatially separated samples for individual specimens. Acropora coral files are widely distributed in Lapita sites across Oceania. U/Th dating of these artifacts provides unparalleled opportunities for greater precision and insight into the speed and timing of this final chapter in human settlement of the globe.
Link
October 22, 2012
Ancient mtDNA of first New Zealanders
PNAS doi: 10.1073/pnas.1209896109
Complete mitochondrial DNA genome sequences from the first New Zealanders
Michael Knapp et al.
The dispersal of modern humans across the globe began ∼65,000 y ago when people first left Africa and culminated with the settlement of East Polynesia, which occurred in the last 1,000 y. With the arrival of Polynesian canoes only 750 y ago, Aotearoa/New Zealand became the last major landmass to be permanently settled by humans. We present here complete mitochondrial genome sequences of the likely founding population of Aotearoa/New Zealand recovered from the archaeological site of Wairau Bar. These data represent complete mitochondrial genome sequences from ancient Polynesian voyagers and provide insights into the genetic diversity of human populations in the Pacific at the time of the settlement of East Polynesia.
Link
Complete mitochondrial DNA genome sequences from the first New Zealanders
Michael Knapp et al.
The dispersal of modern humans across the globe began ∼65,000 y ago when people first left Africa and culminated with the settlement of East Polynesia, which occurred in the last 1,000 y. With the arrival of Polynesian canoes only 750 y ago, Aotearoa/New Zealand became the last major landmass to be permanently settled by humans. We present here complete mitochondrial genome sequences of the likely founding population of Aotearoa/New Zealand recovered from the archaeological site of Wairau Bar. These data represent complete mitochondrial genome sequences from ancient Polynesian voyagers and provide insights into the genetic diversity of human populations in the Pacific at the time of the settlement of East Polynesia.
Link
June 26, 2012
Evolutionary history of continental South East Asians (Jinam et al. 2012)
Mol Biol Evol (2012)
doi: 10.1093/molbev/mss169
Evolutionary history of continental South East Asians: “early train” hypothesis based on genetic analysis of mitochondrial and autosomal DNA data
Timothy A. Jinam et al.
The population history of the indigenous populations in island Southeast Asia is generally accepted to have been shaped by two major migrations; the ancient ‘Out of Africa’ migration ∼50,000 years before present (YBP) and the relatively recent ‘Out of Taiwan’ expansion of Austronesian agriculturalists approximately 5,000 YBP. The Negritos are believed to have originated from the ancient migration whereas the majority of island Southeast Asians are associated with the Austronesian expansion. We determined 86 mitochondrial DNA (mtDNA) complete genome sequences in four indigenous Malaysian populations, together with a reanalysis of published autosomal single nucleotide polymorphism (SNP) data of Southeast Asians to test the plausibility and impact of those migration models. The three Austronesian groups (Bidayuh, Selatar and Temuan) showed high frequencies of mtDNA haplogroups which originated from the Asian mainland ∼30,000 to 10,000 YBP while showing low frequencies of ‘Out of Taiwan’ markers. Principal Component Analysis and phylogenetic analysis using autosomal SNP data indicate a dichotomy between continental and island Austronesian groups. We argue that both the mtDNA and autosomal data suggest an ‘Early Train’ migration originating from Indochina or South China around the late-Pleistocene to early Holocene period which predates, but may not necessarily exclude, the Austronesian expansion.
Link
Evolutionary history of continental South East Asians: “early train” hypothesis based on genetic analysis of mitochondrial and autosomal DNA data
Timothy A. Jinam et al.
The population history of the indigenous populations in island Southeast Asia is generally accepted to have been shaped by two major migrations; the ancient ‘Out of Africa’ migration ∼50,000 years before present (YBP) and the relatively recent ‘Out of Taiwan’ expansion of Austronesian agriculturalists approximately 5,000 YBP. The Negritos are believed to have originated from the ancient migration whereas the majority of island Southeast Asians are associated with the Austronesian expansion. We determined 86 mitochondrial DNA (mtDNA) complete genome sequences in four indigenous Malaysian populations, together with a reanalysis of published autosomal single nucleotide polymorphism (SNP) data of Southeast Asians to test the plausibility and impact of those migration models. The three Austronesian groups (Bidayuh, Selatar and Temuan) showed high frequencies of mtDNA haplogroups which originated from the Asian mainland ∼30,000 to 10,000 YBP while showing low frequencies of ‘Out of Taiwan’ markers. Principal Component Analysis and phylogenetic analysis using autosomal SNP data indicate a dichotomy between continental and island Austronesian groups. We argue that both the mtDNA and autosomal data suggest an ‘Early Train’ migration originating from Indochina or South China around the late-Pleistocene to early Holocene period which predates, but may not necessarily exclude, the Austronesian expansion.
Link
May 08, 2012
Patrilineal signals of Austronesian expansion in mainland Southeast Asia
There was a recent paper on the spread of Austronesian in Island Southeast Asia, and now here's one on its spread in mainland Southeast Asia. Information about sampled populations can be found in Table 1. Haplogroup frequencies below:
PLoS ONE 7(5): e36437. doi:10.1371/journal.pone.0036437
Patrilineal Perspective on the Austronesian Diffusion in Mainland Southeast Asia
Jun-Dong He et al.
The Cham people are the major Austronesian speakers of Mainland Southeast Asia (MSEA) and the reconstruction of the Cham population history can provide insights into their diffusion. In this study, we analyzed non-recombining region of the Y chromosome markers of 177 unrelated males from four populations in MSEA, including 59 Cham, 76 Kinh, 25 Lao, and 17 Thai individuals. Incorporating published data from mitochondrial DNA (mtDNA), our results indicated that, in general, the Chams are an indigenous Southeast Asian population. The origin of the Cham people involves the genetic admixture of the Austronesian immigrants from Island Southeast Asia (ISEA) with the local populations in MSEA. Discordance between the overall patterns of Y chromosome and mtDNA in the Chams is evidenced by the presence of some Y chromosome lineages that prevail in South Asians. Our results suggest that male-mediated dispersals via the spread of religions and business trade might play an important role in shaping the patrilineal gene pool of the Cham people.
Link
PLoS ONE 7(5): e36437. doi:10.1371/journal.pone.0036437
Patrilineal Perspective on the Austronesian Diffusion in Mainland Southeast Asia
Jun-Dong He et al.
The Cham people are the major Austronesian speakers of Mainland Southeast Asia (MSEA) and the reconstruction of the Cham population history can provide insights into their diffusion. In this study, we analyzed non-recombining region of the Y chromosome markers of 177 unrelated males from four populations in MSEA, including 59 Cham, 76 Kinh, 25 Lao, and 17 Thai individuals. Incorporating published data from mitochondrial DNA (mtDNA), our results indicated that, in general, the Chams are an indigenous Southeast Asian population. The origin of the Cham people involves the genetic admixture of the Austronesian immigrants from Island Southeast Asia (ISEA) with the local populations in MSEA. Discordance between the overall patterns of Y chromosome and mtDNA in the Chams is evidenced by the presence of some Y chromosome lineages that prevail in South Asians. Our results suggest that male-mediated dispersals via the spread of religions and business trade might play an important role in shaping the patrilineal gene pool of the Cham people.
Link
March 10, 2012
Austronesian spread across Indonesia
It is wonderful when different disciplines arrive at the same conclusions independently. Recent work in Austronesian languages by Gray, Drummond, and Greenhill arrived at the conclusion that Austronesian originated in Taiwan c. 5,200 years ago, and experienced a rapid expansion pulse c. 4,000 years ago that resulted in the colonization of island Southeast Asia.
This colonization event left its traces in the genomes of present-day eastern Indonesians; the pre-Austronesian inhabitants of those islands were Papuan-like, or, in terms of traditional physical anthropology Australoid, whereas the expanding Austronesian mariners were Mongoloid. If the expansion happened within the time frame in question, it can be dated by dense genotype data by looking at the relative lengths of Australoid and Mongoloid segments in extant individuals.
This is exactly what a new paper has achieved. It has determined that the "Asian" admixture signal in Eastern Indonesia dates to 4,000-3,000 years ago.
This is what the linguistic analysis by Gray et al. had to say:
The paper has some brilliant visualizations of information, one of which is reproduced on the left. Notice the cline of Papuan ancestry in Eastern Indonesia, east of the Wallace Line.
From the paper:
PNAS doi: 10.1073/pnas.1118892109
Genetic dating indicates that the Asian–Papuan admixture through Eastern Indonesia corresponds to the Austronesian expansion
Shuhua Xu et al.
Although the Austronesian expansion had a major impact on the languages of Island Southeast Asia, controversy still exists over the genetic impact of this expansion. The coexistence of both Asian and Papuan genetic ancestry in Eastern Indonesia provides a unique opportunity to address this issue. Here, we estimate recombination breakpoints in admixed genomes based on genome-wide SNP data and date the genetic admixture between populations of Asian vs. Papuan ancestry in Eastern Indonesia. Analyses of two genome-wide datasets indicate an eastward progression of the Asian admixture signal in Eastern Indonesia beginning about 4,000–3,000 y ago, which is in excellent agreement with inferences based on Austronesian languages. The average rate of spread of Asian genes in Eastern Indonesia was about 0.9 km/y. Our results indicate that the Austronesian expansion had a strong genetic as well as linguistic impact on Island Southeast Asia, and they significantly advance our understanding of the biological origins of human populations in the Asia–Pacific region.
Link
This colonization event left its traces in the genomes of present-day eastern Indonesians; the pre-Austronesian inhabitants of those islands were Papuan-like, or, in terms of traditional physical anthropology Australoid, whereas the expanding Austronesian mariners were Mongoloid. If the expansion happened within the time frame in question, it can be dated by dense genotype data by looking at the relative lengths of Australoid and Mongoloid segments in extant individuals.
This is exactly what a new paper has achieved. It has determined that the "Asian" admixture signal in Eastern Indonesia dates to 4,000-3,000 years ago.
This is what the linguistic analysis by Gray et al. had to say:
It shows an Austronesian origin in Taiwan around 5200 years ago, followed bya settlement pause (pause 1) between 5200 and 4000 years ago. After this pause, a rapid expansion pulse (pulse 1) led to thesettlement of Island Southeast Asia, New Guinea and Near Oceania in less than 1000 years.which is entirely consistent with the 4,000-3,000 year old colonization of Eastern Indonesia deduced by genetic recombination analysis.
The paper has some brilliant visualizations of information, one of which is reproduced on the left. Notice the cline of Papuan ancestry in Eastern Indonesia, east of the Wallace Line.
From the paper:
These results strongly suggest that the admixture cline in East Indonesia reflects the spread of individuals of Asian ancestry coming from the west and admixing with resident groups of Papuan ancestry. Second, the time of admixture is highlyconsistent for the two different datasets, which were estimated bytwo different methods, and suggest that the admixture began about 4,000 y ago (Figs. 1E and 2E and Table 3). This time is in excellent agreement with estimates from archaeological and linguistic data for the arrival of Austronesian speakers in East Indonesia about 3,500–4,000 y ago (9, 21). For example, the oldest pottery found in East Indonesia, associated with the Austronesian culture, dates back to 3,500 y ago (22). Moreover , a Bayesian analysis of Austronesian languages dates the Austronesian expansion into Indonesia to about 4,000 y ago and also suggests a west to east spread across East Indonesia (9).This is a wonderful co-validation of the (once controversial) use of Bayesian phylogenetics in linguistics, and time depth estimation via recombination in genetics, calibrated with "hard" archaeological evidence. It will be great to see the same consensus arrived for other families as well.
PNAS doi: 10.1073/pnas.1118892109
Genetic dating indicates that the Asian–Papuan admixture through Eastern Indonesia corresponds to the Austronesian expansion
Shuhua Xu et al.
Although the Austronesian expansion had a major impact on the languages of Island Southeast Asia, controversy still exists over the genetic impact of this expansion. The coexistence of both Asian and Papuan genetic ancestry in Eastern Indonesia provides a unique opportunity to address this issue. Here, we estimate recombination breakpoints in admixed genomes based on genome-wide SNP data and date the genetic admixture between populations of Asian vs. Papuan ancestry in Eastern Indonesia. Analyses of two genome-wide datasets indicate an eastward progression of the Asian admixture signal in Eastern Indonesia beginning about 4,000–3,000 y ago, which is in excellent agreement with inferences based on Austronesian languages. The average rate of spread of Asian genes in Eastern Indonesia was about 0.9 km/y. Our results indicate that the Austronesian expansion had a strong genetic as well as linguistic impact on Island Southeast Asia, and they significantly advance our understanding of the biological origins of human populations in the Asia–Pacific region.
Link
December 06, 2011
Y-chromosome ties between Taiwan and Polynesia
Gene. 2011 Nov 3. [Epub ahead of print]
Increased Y-chromosome resolution of haplogroup O suggests genetic ties between the Ami aborigines from Taiwan and the Polynesian Islands of Samoa and Tonga.
Mirabal S, Herrera KJ, Gayden T, Regueiro M, Underhill PA, Garcia-Bertrand RL, Herrera RJ.
Source
Source
Abstract
The Austronesian expansion has left its fingerprint throughout two thirds of the circumference of the globe reaching the island of Madagascar in East Africa to the west and Easter Island, off the coast of Chile, to the east. To date, several theories exist to explain the current genetic distribution of Austronesian populations, with the "slow boat" model being the most widely accepted, though other conjectures (i.e., the "express train" and "entangled bank" hypotheses) have also been widely discussed. In the current study, 158 Y chromosomes from the Polynesian archipelagos of Samoa and Tonga were typed using high resolution binary markers and compared to populations across Mainland East Asia, Taiwan, Island Southeast Asia, Melanesia and Polynesia in order to establish their patrilineal genetic relationships. Y-STR haplotypes on the C2 (M38), C2a (M208), O1a (M119), O3 (M122) and O3a2 (P201) backgrounds were utilized in an attempt to identify the differing sources of the current Y-chromosomal haplogroups present throughout Polynesia (of Melanesian and/or Asian descent). Specifically, while haplogroups C2a, S and K3-P79 suggest a Melanesian component in 23%-42% of the Samoan and Tongan Y chromosomes, the prominence of sub-haplogroup O3a2c* (P164), which has previously been observed at only minimal levels in Mainland East Asians (2.0-4.5%), in both Polynesians (ranging from 19% in Manua to 54% in Tonga) and Ami aborigines from Taiwan (37%) provides, for the first time, evidence for a genetic connection between the Polynesian collections and the Ami.
Link
The Austronesian expansion has left its fingerprint throughout two thirds of the circumference of the globe reaching the island of Madagascar in East Africa to the west and Easter Island, off the coast of Chile, to the east. To date, several theories exist to explain the current genetic distribution of Austronesian populations, with the "slow boat" model being the most widely accepted, though other conjectures (i.e., the "express train" and "entangled bank" hypotheses) have also been widely discussed. In the current study, 158 Y chromosomes from the Polynesian archipelagos of Samoa and Tonga were typed using high resolution binary markers and compared to populations across Mainland East Asia, Taiwan, Island Southeast Asia, Melanesia and Polynesia in order to establish their patrilineal genetic relationships. Y-STR haplotypes on the C2 (M38), C2a (M208), O1a (M119), O3 (M122) and O3a2 (P201) backgrounds were utilized in an attempt to identify the differing sources of the current Y-chromosomal haplogroups present throughout Polynesia (of Melanesian and/or Asian descent). Specifically, while haplogroups C2a, S and K3-P79 suggest a Melanesian component in 23%-42% of the Samoan and Tongan Y chromosomes, the prominence of sub-haplogroup O3a2c* (P164), which has previously been observed at only minimal levels in Mainland East Asians (2.0-4.5%), in both Polynesians (ranging from 19% in Manua to 54% in Tonga) and Ami aborigines from Taiwan (37%) provides, for the first time, evidence for a genetic connection between the Polynesian collections and the Ami.
Link
June 23, 2011
Dual origins of cultivated coconuts

Independent Origins of Cultivated Coconut (Cocos nucifera L.) in the Old World Tropics
Bee F. Gunn et al.
As a portable source of food, water, fuel, and construction materials, the coconut (Cocos nucifera L.) played a fundamental role in human migrations and the development of civilization across the humid tropics. Here we investigated the coconut's domestication history and its population genetic structure as it relates to human dispersal patterns. A sample of 1,322 coconut accessions, representing the geographical and phenotypic diversity of the species, was examined using ten microsatellite loci. Bayesian analyses reveal two highly genetically differentiated subpopulations that correspond to the Pacific and Indo-Atlantic oceanic basins. This pattern suggests independent origins of coconut cultivation in these two world regions, with persistent population structure on a global scale despite long-term human cultivation and dispersal. Pacific coconuts show additional genetic substructure corresponding to phenotypic and geographical subgroups; moreover, the traits that are most clearly associated with selection under human cultivation (dwarf habit, self-pollination, and “niu vai” fruit morphology) arose only in the Pacific. Coconuts that show evidence of genetic admixture between the Pacific and Indo-Atlantic groups occur primarily in the southwestern Indian Ocean. This pattern is consistent with human introductions of Pacific coconuts along the ancient Austronesian trade route connecting Madagascar to Southeast Asia. Admixture in coastal east Africa may also reflect later historic Arab trading along the Indian Ocean coastline. We propose two geographical origins of coconut cultivation: island Southeast Asia and southern margins of the Indian subcontinent.
Link
May 17, 2011
The spread of Austronesian farmers across the Pacific

Related:
Current Anthropology http://www.jstor.org/stable/full/10.1086/658181
Holocene Population History in the Pacific Region as a Model for Worldwide Food Producer Dispersals
Peter Bellwood
Pacific prehistory (excluding Australia) since 3000 BC reflects the impacts of two source regions for food production: China from the Yangzi southward (including Taiwan) and the western Pacific (especially the New Guinea Highlands). The linguistic (Austronesian, Trans–New Guinea), bioanthropological/human genetic, and Neolithic archaeological records each carry signals of expansion from these two source regions. A combined consideration of the multiregional results within all three disciplines (archaeology, linguistics, and biology) offers a historical perspective that will never be obtained from one discipline or one region alone. The fundamental process of human behavior involved in such expansion—population dispersal linked to increases in human population size—is significant for explaining the early spreads of food production and language families in many parts of the world. This article is concerned mainly with the archaeological record for the expansion of early food producers, Austronesian languages, and Neolithic technologies through Taiwan into the northern Philippines as an early stage in what was to become the greatest dispersal of an ethnolinguistic population in world history before AD 1500.
Link
- Major East-West divide in Indonesian Y chromosomes
- More on geographical divide between Asian and Melanesian types in Indonesia (Cox et al. 2010)
- Demographic history of Oceania (Wollstein et al. 2010)
Current Anthropology http://www.jstor.org/stable/full/10.1086/658181
Holocene Population History in the Pacific Region as a Model for Worldwide Food Producer Dispersals
Peter Bellwood
Pacific prehistory (excluding Australia) since 3000 BC reflects the impacts of two source regions for food production: China from the Yangzi southward (including Taiwan) and the western Pacific (especially the New Guinea Highlands). The linguistic (Austronesian, Trans–New Guinea), bioanthropological/human genetic, and Neolithic archaeological records each carry signals of expansion from these two source regions. A combined consideration of the multiregional results within all three disciplines (archaeology, linguistics, and biology) offers a historical perspective that will never be obtained from one discipline or one region alone. The fundamental process of human behavior involved in such expansion—population dispersal linked to increases in human population size—is significant for explaining the early spreads of food production and language families in many parts of the world. This article is concerned mainly with the archaeological record for the expansion of early food producers, Austronesian languages, and Neolithic technologies through Taiwan into the northern Philippines as an early stage in what was to become the greatest dispersal of an ethnolinguistic population in world history before AD 1500.
Link
February 04, 2011
Sailing across the Pacific to settle Polynesia (Soares et al. 2011)
I always have a hard time following these easy archaeological interpretations on the basis of uniparental markers, both because I'm convinced that they are not supported by the wide confidence intervals of age estimates, and because, as I've argued countless times, age of colonization != age of most recent common ancestor of colonists' descendants.
From the press release:
The American Journal of Human Genetics, 03 February 2011
doi:10.1016/j.ajhg.2011.01.009
Ancient Voyaging and Polynesian Origins
With respect to the latter point, let me just reiterate that:
- The common founder of a set of lineages may postdate the colonization event, if the number of colonists was small enough so that attrition was high enough, and a founder that lived long after the colonization effect contributed most of the present-day population
- The common founder of a set of lineages may predate the colonization event, if the number of colonists was high enough, so that multiple related lineages with a founder who lived before the event, survived into the modern population.
Surprising new evidence which overturns current theories of how humans colonised the Pacific has been discovered by scientists at the University of Leeds, UK.The islands of Polynesia were first inhabited around 3,000 years ago, but where these people came from has long been a hot topic of debate amongst scientists. The most commonly accepted view, based on archaeological and linguistic evidence as well as genetic studies, is that Pacific islanders were the latter part of a migration south and eastwards from Taiwan which began around 4,000 years ago.But the Leeds research – published today in The American Journal of Human Genetics – has found that the link to Taiwan does not stand up to scrutiny. In fact, the DNA of current Polynesians can be traced back to migrants from the Asian mainland who had already settled in islands close to New Guinea some 6-8,000 years ago....Professor Richards and co-researcher Dr Pedro Soares (now at the University of Porto), argue that the linguistic and cultural connections are due to smaller migratory movements from Taiwan that did not leave any substantial genetic impact on the pre-existing population.
The American Journal of Human Genetics, 03 February 2011
doi:10.1016/j.ajhg.2011.01.009
Ancient Voyaging and Polynesian Origins
Pedro Soares et al.
Abstract
The “Polynesian motif” defines a lineage of human mtDNA that is restricted to Austronesian-speaking populations and is almost fixed in Polynesians. It is widely thought to support a rapid dispersal of maternal lineages from Taiwan ∼4000 years ago (4 ka), but the chronological resolution of existing control-region data is poor, and an East Indonesian origin has also been proposed. By analyzing 157 complete mtDNA genomes, we show that the motif itself most likely originated >6 ka in the vicinity of the Bismarck Archipelago, and its immediate ancestor is >8 ka old and virtually restricted to Near Oceania. This indicates that Polynesian maternal lineages from Island Southeast Asia gained a foothold in Near Oceania much earlier than dispersal from either Taiwan or Indonesia 3–4 ka would predict. However, we find evidence in minor lineages for more recent two-way maternal gene flow between Island Southeast Asia and Near Oceania, likely reflecting movements along a “voyaging corridor” between them, as previously proposed on archaeological grounds. Small-scale mid-Holocene movements from Island Southeast Asia likely transmitted Austronesian languages to the long-established Southeast Asian colonies in the Bismarcks carrying the Polynesian motif, perhaps also providing the impetus for the expansion into Polynesia.
Link
Abstract
The “Polynesian motif” defines a lineage of human mtDNA that is restricted to Austronesian-speaking populations and is almost fixed in Polynesians. It is widely thought to support a rapid dispersal of maternal lineages from Taiwan ∼4000 years ago (4 ka), but the chronological resolution of existing control-region data is poor, and an East Indonesian origin has also been proposed. By analyzing 157 complete mtDNA genomes, we show that the motif itself most likely originated >6 ka in the vicinity of the Bismarck Archipelago, and its immediate ancestor is >8 ka old and virtually restricted to Near Oceania. This indicates that Polynesian maternal lineages from Island Southeast Asia gained a foothold in Near Oceania much earlier than dispersal from either Taiwan or Indonesia 3–4 ka would predict. However, we find evidence in minor lineages for more recent two-way maternal gene flow between Island Southeast Asia and Near Oceania, likely reflecting movements along a “voyaging corridor” between them, as previously proposed on archaeological grounds. Small-scale mid-Holocene movements from Island Southeast Asia likely transmitted Austronesian languages to the long-established Southeast Asian colonies in the Bismarcks carrying the Polynesian motif, perhaps also providing the impetus for the expansion into Polynesia.
Link
Subscribe to:
Posts (Atom)