December 02, 2008

Isolation-with-migration model

From the paper:
Reconstructing human history requires an accurate picture of global human population structure [1]. However, methods currently used to describe structure among human groups typically rely on very simple demographic models that make unrealistic biological assumptions. Two commonly used models include the island model, which assumes that populations have no shared ancestry and are related only through gene flow (Figure 1A), and the phylogenetic branching or splitting model, which assumes that populations diverged at some time in the past and have remained completely isolated ever since (i.e., no gene flow) (Figure 1B). Despite increasingly sophisticated genetic datasets, most contemporary studies still assume these unrealistic models to infer aspects of human demographic history [2-8].
BMC Genetics doi: 10.1186/1471-2156-9-76

Intergenic DNA sequences from the human X chromosome reveal high rates of global gene flow

Murray P. Cox et al.

Abstract (provisional)

Background

Despite intensive efforts devoted to collecting human polymorphism data, little is known about the role of gene flow in the ancestry of human populations. This is partly because most analyses have applied one of two simple models of population structure, the island model or the splitting model, which make unrealistic biological assumptions.

Results

Here, we analyze 98-kb of DNA sequence from 20 independently evolving intergenic regions on the X chromosome in a sample of 90 humans from six globally diverse populations. We employ an isolation-with-migration (IM) model, which assumes that populations split and subsequently exchange migrants, to independently estimate effective population sizes and migration rates. While the maximum effective size of modern humans is estimated at ~10,000, individual populations vary substantially in size, with African populations tending to be larger (2,300-9,000) than non-African populations (300-3,300). We estimate mean rates of bidirectional gene flow at 4.8 x 10-4/generation. Bidirectional migration rates are ~5-fold higher among non-African populations (1.5 x 10-3) than among African populations (2.7 x 10-4). Interestingly, because effective sizes and migration rates are inversely related in African and non-African populations, population migration rates are similar within Africa and Eurasia (e.g., global mean Nm = 2.4).

Conclusion

We conclude that gene flow has played an important role in structuring global human populations and that migration rates should be incorporated as critical parameters in models of human demography.


Link

1 comment:

terryt said...

Maju. Take note. Isn't this what I've been trying to tell you?