- 0.57 in Iran
- 0.47 in Pakistan
- 0.36 in India
See also STR variance of haplogroup J2 in the Balkans and Anatolia.
When the samples used in Fig. 1 are compared by the use of canonical variate plots as in Fig. 2, the separateness of the Niger-Congo speakers is again quite clear. Interestingly enough, however, the small Natufian sample falls between the Niger-Congo group and the other samples used. Fig. 2 shows the plot produced by the first two canonical variates, but the same thing happens when canonical variates 1 and 3 (not shown here) are used. This placement suggests that there may have been a Sub-Saharan African element in the make-up of the Natufians (the putative ancestors of the subsequent Neolithic), although in this particular test there is no such evident presence in the North African or Egyptian samples. As shown in Fig. 1, the Somalis and the Egyptian Bronze Age sample from Naqada may also have a hint of a Sub-Saharan African component. That was not borne out in the canonical variate plot (Fig. 2), and there was no evidence of such an involvement in the Algerian Neolithic (Gambetta) sample.
The generally high D2 values for the Natufian sample in Table 3 are almost certainly a reflection of the very small sample size.The Natufian sample consisted of only 4 individuals. Thus, it appears that the high distances of the Niger-Congo group are indicative of its biological distinctiveness, whereas the high distances of the Natufians are due to the small sample size.
If the Late Pleistocene Natufian sample from Israel is the source from which that Neolithic spread was derived, then there was clearly a Sub-Saharan African element present of almost equal importance as the Late Prehistoric Eurasian element. At the same time, the failure of the Neolithic and Bronze Age samples in central and northern Europe to tie to the modern inhabitants supports the suggestion that, while a farming mode of subsistence was spread westward and also north to Crimea and east to Mongolia by actual movement of communities of farmers, the indigenous foragers in each of those areas ultimately absorbed both the agricultural subsistence strategy and also the people who had brought it.The "if" portion of the statement is problematic. While Natufians are widely acknowledged as a culture anticipating the arrival of the Neolithic, they were not the first Neolithic agriculturalists, nor where they the immediate source of the transmission of agriculture. According to Pinhasi and Pluciennik (CURRENT ANTHROPOLOGY Volume 45, Number S4, August-October 2004):
Analysis of the material suggests that there was considerable morphological heterogeneity among the earliest farmers of the Levant belonging to the Pre-Pottery Neolithic but that similar variability is generally not seen among the earliest mainland agriculturalists of south-eastern Europe. We propose that this may be explained by the existence of a genetic "bottleneck" among Anatolian populations and that it supports models of the largely exogenous origin of many early Neolithic populations in this region.Thus, the sample of 4 Natufian individuals does not represent the first pre-pottery Neolithic populations, and moreover, it does not represent the immediate source of the Neolithic in Europe, which was that of the Neolithic agriculturalists of Anatolia. As Pinhasi and Pluciennik state:
Analysis of morphological variability in the Near East and Europe (here and in Pinhasi 2003) suggests that the Epipalaeolithic populations from the Natufian Levant were noticeably different to the Mesolithic populations described from the Danube Gorge, the western Mediterranean, and central Europe. No close similarities were observed between Early Neolithic and Mesolithic European groups in any of the regions studied, with the possible exception of Mediterranean Europe. However, neither were clear affinities observed between Epipalaeolithic Near Eastern groups and any other Neolithic or Mesolithic groups.The last statement is important, because it establishes that the Natufians did not have clear associations with the first Neolithic groups. So, while they are believed to be pre-agricultural culturally they are not related to any Neolithic groups biologically.
If this analysis shows nothing else, it demonstrates that the oft-repeated European feeling that the Cro-Magnons are ‘‘us’’ (47) is more a product of anthropological folklore than the result of the metric data available from the skeletal remains.Yes, this bizarre statement is not supported by his own data, which shows that Cro-Magnon shows that the Modern European sample is the only one to which Cro-Magnon is aligned to, however distantly:
Using raw measurements, 6 of 8 express an affinity to Norse, and with the shape variables of Darroch and Mosimann ([1985]), 5 of 8 express a similarity to Norse. Using shape variables reduces the Mahalanobis distance, substantially in some cases. Typicality probabilities (Wilson, [1981]), particularly for the shape variables, show the crania to be fairly typical of recent populations. The results presented in Table 1 are consistent with the idea that Upper Paleolithic crania are, for the most part, larger and more generalized versions of recent Europeans. Howells ([1995]) reached a similar conclusion with respect to European Mesolithic crania.UPDATE
You state that Modern Europeans are not very closely linked to
Neolithic/Bronze Age Europeans, yet in Table 3, the distance between
"Modern Europe" and "Late Prehistoric Eurasia" is 1.87 which is the
lowest among all population pairs. "Late Prehistoric Eurasia" is
defined as:
"Then Neolithic samples from Denmark, England, France, Germany, and
Portugal were combined with Bronze Age samples from England, Jericho,
and Mongolia to make a ''Late Prehistoric Eurasia'' sample."
This would seem to indicate a strong affinity between Neolithic/Bronze
Age Europeans and modern Europeans.
Moreover, you state that "the oft-repeated European feeling that the
Cro-Magnons are ''us'' (47) is more a product of anthropological
folklore than the result of the metric data available from the
skeletal remains."
But, in Table 4, Cro-Magnon I shows mixed affiliations between Modern
Europe and Late Prehistoric Eurasia. The inability to fall completely
in either Modern Europe or LP Eurasia is not surprising, since Modern
Europe and Late Prehistoric Eurasia are extremely close to each other
(Table 3). So, the data in Table 4 seem to suggest that Cro-Magnon I
did in fact resemble modern Europeans and Late Prehistoric Eurasians.
I would be very interested in hearing your comments.
In this context, given the geographic distribution of the slow acetylator phenotype and the estimated expansion time of the slowest-encoding 341T>C mutation (5,797-7,005 years ago in West/Central Eurasians), it is tempting to hypothesize that the emergence of agriculture in West Eurasia could be at the basis of such environmental changes. Indeed, there is accumulating evidence that this major transition resulted in a profound modification of human diets and lifestyles (Cordain et al. 2005) and consequently, in the exposure to human chemical environment (Ferguson et al. 2002). Moreover, the highest frequencies of slow acetylators are observed in the Middle East (fig. 5), one of the first regions where agriculture originated ~10,000 years ago, and these frequencies decrease towards Western Europe, North Africa and India, three regions where agriculture was subsequently diffused from the Fertile Crescent (Harris 1996).American Journal of Human Genetics (in press)
The genes belong to several biologically important categories, including genes important in defense against disease, controlling the cell cycle, protein metabolism, and nervous system functioning, the researchers report online this week in Proceedings of the National Academy of Sciences.The New Scientist also covers this paper:
One way to look for genes that have recently been changed by natural selection is to study mutations called single-nucleotide polymorphisms (SNPs) – single-letter differences in the genetic code. The trick is to look for pairs of SNPs that occur together more often than would be expected from the chance genetic reshuffling that inevitably happens down the generations.You might also want to read my older post on Human domestication reconsidered, which reports on anthropological changes which are also evidence of human domestication:
Such correlations are known as linkage disequilibrium, and can occur when natural selection favours a particular variant of a gene, causing the SNPs nearby to be selected as well.
...
Moyzis speculates that we may have similarly “domesticated” ourselves with the emergence of modern civilisation.
“One of the major things that has happened in the last 50,000 years is the development of culture,” he says. “By so radically and rapidly changing our environment through our culture, we’ve put new kinds of selection [pressures] on ourselves.”
Genes that aid protein metabolism – perhaps related to a change in diet with the dawn of agriculture – turn up unusually often in Moyzis’s list of recently selected genes. So do genes involved in resisting infections, which would be important in a species settling into more densely populated villages where diseases would spread more easily. Other selected genes include those involved in brain function, which could be important in the development of culture.
Helen Leach is proposing that the Late Pleistocene and early Holocene (archaeologically Neolithic) humans underwent changes similar to those of animals that underwent the domestication process. So, she argues that if we apply terminology consistently, we must also entertain the possibility that humans themselves are a domesticated species.