Predicting 9% of educational achievement from DNA is quite good. The authors used genotype arrays, so there's obvious room for growth in rare variation that is not covered by such arrays.
I wonder when the public and policymakers will get wind of the fact that educational achievement is highly heritable and can even be somewhat predicted with existing DNA technology.
Genetic egalitarianism is an edifice on which too much has been invested and I doubt that it will go down without a fight. It's of course a great idea to optimize learning for the students you've got. But, at the end of the day there's only so much you can do to foster achievement in a trait that is mostly genetically determined.
Molecular Psychiatry advance online publication 19 July 2016; doi: 10.1038/mp.2016.107
Predicting educational achievement from DNA
S Selzam et al.
A genome-wide polygenic score (GPS), derived from a 2013 genome-wide association study (N=127,000), explained 2% of the variance in total years of education (EduYears). In a follow-up study (N=329,000), a new EduYears GPS explains up to 4%. Here, we tested the association between this latest EduYears GPS and educational achievement scores at ages 7, 12 and 16 in an independent sample of 5825 UK individuals. We found that EduYears GPS explained greater amounts of variance in educational achievement over time, up to 9% at age 16, accounting for 15% of the heritable variance. This is the strongest GPS prediction to date for quantitative behavioral traits. Individuals in the highest and lowest GPS septiles differed by a whole school grade at age 16. Furthermore, EduYears GPS was associated with general cognitive ability (~3.5%) and family socioeconomic status (~7%). There was no evidence of an interaction between EduYears GPS and family socioeconomic status on educational achievement or on general cognitive ability. These results are a harbinger of future widespread use of GPS to predict genetic risk and resilience in the social and behavioral sciences.
Link
July 19, 2016
July 11, 2016
Y-chromosome haplogroup N phylogeny resolved
AJHG Volume 99, Issue 1, p163–173, 7 July 2016
Human Y Chromosome Haplogroup N: A Non-trivial Time-Resolved Phylogeography that Cuts across Language Families
Anne-Mai Ilumäe et al.
The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3’6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity.
Link
Human Y Chromosome Haplogroup N: A Non-trivial Time-Resolved Phylogeography that Cuts across Language Families
Anne-Mai Ilumäe et al.
The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3’6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity.
Link